Chapter 5:Momentum Equation and Its Applications

Example 5.2 Page No121

In [2]:
import math

#variable initialisation

V1=11 #Velocity in m/s

r=0.075 #radius in m

Ry=400 #total load  in N

rho=800 #oil density in kg/m^3

g=9.81 #gravity

#Calculation

A1=(math.pi/4)*(r**2)

Q=A1*V1

#since the jet is issuing into atmosphere p1=p2=0

#h=equilibrium height of the plane above 1,V2=velocity of the plate just before impact

#Ry=rho*Q*V1**2

h=(((Ry/(rho*Q))**2)-(V1**2))/(-(2*g))

print "The equilibrium height of the plate is",round(h,3),"m"
The equilibrium height of the plate is 0.772 m

Example 5.6 Page No124

In [3]:
import math

#variable initialisation

Q=0.06                         #discharge in m^3/s

D1=15                          #Diameter 1 in cm

D2=5                           #Diameter 2 in cm

ga=9.79                        #unit length of water in kN/m^3

g=9.81                         #gravity

rho= 998                       #relative density

#Calculation

A2=((math.pi)/4)*((D2/100)**2)

V2=Q/A2

V1=V2*((D2/D1)**2)

#By applying Bernoullis equation to sections 1 and 2,by assuming the bend to be in the horizontal plane,

p1=round(((((V2**2)/(2*g))-((V1**2)/(2*g)))*ga),1)

#By momentum equation in the x-direction,

A1=((math.pi)/4)*((D1/100)**2)

Rx=rho*Q*(V2-(-V1))+((p1*1000)*A1)

#The force exerted by the fluid on the pipe,and hence on the bolts in section1,is equal and opposite to Rx.

print "F=",int(Rx)," N and acts to the left,i.e. in the negative x-direction,as a pull (tension) on the joint."
F= 10165  N and acts to the left,i.e. in the negative x-direction,as a pull (tension) on the joint.

Example 5.9 Page No125

In [6]:
import math

#variable initialisation

D1=0.5                         #diameter in m

D2=0.25                        #diameter in m

ga=9.79                        #unit length of water in kN/m^3

g=9.81                         #gravity

p1=15.0                        #pressure at section 1 in kPa

h=2                            #height in m

rho=0.998                      #relative density

Q=0.5                          #discharge in m

#Calculation

A1=(math.pi/4)*(D1**2)

A2=(math.pi/4)*(D2**2)

V1=D1/A1                                                           #Velocities at section 1 and 2

print "(i)V1=",round(V1,3),"m/s"

V2=D1/A2

print "V2=",round(V2,3),"m/s"

#By applying Bernoullis theorem to sections 1 and 2,

p2=(((p1/ga)+(V1**2)/(2*g))-(h+(V2**2)/(2*g)))*ga                  #Calculating pressure at section 2

print "(ii)P2=",round(p2,3),"kPa(guage)"

#Now,consider a control volume.

r1=D1/2

r2=D2/2

#weight of water in the control volume which is in the shape of frustum of cone

W=round((ga*(math.pi/3))*(h*((r1**2)+(r1*r2)+(r2**2))),3)

#Applying linear momentum equation in the vertical direction to cv

#reaction force on the water in the control volume

Ry=round((rho*Q*(V2-V1))-(-W+(p1*A1)+(-p2*A2)),3)

#F=Net force on the nozzle walls is equal and opposite to Ry

print "(iii)F=",Ry,"kN acting vertically downwards"
(i)V1= 2.546 m/s
V2= 10.186 m/s
(ii)P2= -53.115 kPa(guage)
(iii)F= 0.503 kN acting vertically downwards

Example 5.16 Page No129

In [7]:
#variable initialisation

A1=0.01                  #Area of cross section 1 in m^2

V1=20                    #velocity1 in m/s

V2=10                    #velocity2 in m/s

A2=0.02                  #Area of cross section 2 in m^2

rho=1000                 #density of water in kg/m^3

#Calculation

Q1=V1*A1

Q2=V2*(A2-A1)

Q=Q1+Q2                  #total flow

V3=Q/A2                  #velocity 3

#By momentum equation in the x-direction:

#p1*A2-p2*A2=Mout-Min

#let us take (p1-p2) as a

a=(-(rho*((Q*V3)-(Q1*V1)-(Q2*V2)))/A2)

print "(p2-p1)=",round(a/1000,0),"kPa"
(p2-p1)= 25.0 kPa

Example 5.18 Page No130

In [8]:
import math

#variable initialisation

D=1                         #diameter in cm

Q=2500                      #discharge in cm^3/s

r=0.30                      #radius in m

#Calculation

a=round((math.pi/4)*(D**2),4)

print "answer calculated in this book for V2 is wrong.It should be as follows,"

V2=(Q/(2*a))/100

print "V2=",round(V2,2),"m/s"  #relative velocity of jet

#T=-rho*Q*r(U2-V2)             #Torque

omega=V2/r                     #angular velocity

print "omega",round(omega,2),"rad./s"

N=(omega/(2*math.pi))*60       #Speed of rotation per minute,

print "N=",round(N,1),"rpm"
answer calculated in this book for V2 is wrong.It should be as follows,
V2= 15.92 m/s
omega 53.05 rad./s
N= 506.6 rpm

Example 5.19 Page No130

In [9]:
import math

#variable initialisation

rho=998                #relative density of water in kg/m^3

Q=2.5                  #discharge in L/s

D=1                    #diameter in cm

r=0.30                 #radius in cm

#calculation

a=round((math.pi/4)*(D**2),4)

print "answer calculated in this book for V2 is wrong.It should be as follows,"

V2=((Q*1000)/(2*a))/100

print "V2=",round(V2,2),"m/s"  #relative velocity of jet

To=rho*Q*r*V2                  #when the sprinkler is stationary

print "Torque To=",round((To)/1000,2),"N.m"
answer calculated in this book for V2 is wrong.It should be as follows,
V2= 15.92 m/s
Torque To= 11.91 N.m

Example 5.22 Page No131

In [10]:
import math

#variable initialisation

Q=1.5                     #discharge in L/s

A=0.8                     #area in cm^2

V2=9.375                  #relative velocity in m/s

V3=9.375                  #relative velocity in m/s

r3=0.4                    #radius in cm

r2=0.3                    #radius in cm

rho=998                   #density of water in kg/m^3

#calculation

Qn=Q/2

V=(Q*1000)/(A*2)

#absolute velocity,V2=v2+omega*r2

#V3=v3-omega-omega*r3

#r2V2=r3V3,for zero frictional resistance

omega=(r3*V2-r2*V2)/(r3*r3+r2*r2)

N=(omega*60)/(math.pi*2)

print "(i)Torque on the arm"

print "N=",round(N,2),"rpm"

To=(-rho*Qn*(-r3*V3+r2*V2))/1000

print "(ii)When the arm is stationary"

print "To=",round(To,3),"N.m"
(i)Torque on the arm
N= 35.81 rpm
(ii)When the arm is stationary
To= 0.702 N.m