Chapter - 17 : CONTROLLED RECTIFIERS

Ex 17.1 Pg 370

In [7]:
from __future__ import division
from math import pi,sqrt,cos,acos
RL=100#
Vm=300#
#load power P= Vdc*Idc
a=(Vm/(2*pi))**2*(1/RL)#
print "a=%0.3f"%a
p=25#
#1+cosb=sgrt(25/a)
b=a*1+cos(sqrt(p/a))#
cosalpha=(sqrt(p/a))-1#
p=80#
cosalpha=(sqrt(p/a))-1#
print "cosalpha=%0.3f"%cosalpha
#or#
alpha=acos(cosalpha)*180/pi
print 'alpha=%0.3f'%alpha,'degree'
a=22.797
cosalpha=0.873
alpha=29.157 degree

Ex 17.2 Pg 371

In [9]:
from __future__ import division

vm=200#
Rl=1*10**3#
#ALPHA=0degree
Vdc=vm*0.318#
Idc=Vdc/Rl#
P=Vdc*Idc#
print "P=%0.2f"%(P*1e3),'mW',"OR"
print "P=%0.2f"%P,'W'
#alpha=45 degree
Vdc=vm*0.27#
Idc=Vdc/Rl#
P=Vdc*Idc#
print "P=%0.2f"%(P*1e3),'mW',"OR"
print "P=%0.2f"%P,'W'
#alpha=90 degree
Vdc=vm*0.159#
Idc=Vdc/Rl#
P=Vdc*Idc#
print "P=%02f"%(P*1e3),'mW',"OR"
print "P=%0.2f"%P,'W'

#alpha=135 degree
Vdc=vm*0.04660#
Idc=Vdc/Rl#
P=Vdc*Idc#
print "P=%0.2f"%(P*1e3),'mW',"OR"
print "P=%0.2f"%P,'W'
P=4044.96 mW OR
P=4.04 W
P=2916.00 mW OR
P=2.92 W
P=1011.240000 mW OR
P=1.01 W
P=86.86 mW OR
P=0.09 W

Ex 17.3 Pg 372

In [10]:
from __future__ import division
from math import sqrt,pi,cos
Vrms=220#
a=60#
Vm=sqrt (2)*Vrms#
print 'Vm=%02.f'%Vm,"V"
Vdc=(Vm/(2*pi))*(1+cos(pi/180*60))#
print 'Vdc=%0.2f'%Vdc,"V"
Vm=311 V
Vdc=74.28 V

Ex 17.4 Pg 373

In [12]:
from __future__ import division
from math import sqrt,pi,cos
Vrms=100#
a=45#
Idc=0.5#
Vm=sqrt (2)*Vrms#
print 'Vm=%0.2f'%Vm,"V"
#Idc=(Vm/(2*pi*RL))*(1+cosd(a))#
RL=(Vm/(2*pi*Idc))*(1+cos(pi/180*a))#
print "RL=%0.2f"%RL,'ohm'
Vm=141.42 V
RL=76.85 ohm

Ex 17.5 Pg 374

In [14]:
from __future__ import division

Ton=30*10**-6#
Toff=10*10**-6#
#consider duty cycle=a
a=Ton/(Ton+Toff)#
print "a=%0.2f"%a
f=(1/(Ton+Toff))
print "f=%0.2f"%(f*10**-3),'kHZ'
a=0.75
f=25.00 kHZ

Ex 17.6 Pg 375

In [15]:
from __future__ import division

Ton=30*10**-3#
Toff=10*10**-3#
Vdc=200#
a=Ton/(Ton+Toff)#
print "a=%0.2f"%a
Vl=Vdc*a#
print 'Vl=%0.2f'%(Vl),"V"
a=0.75
Vl=150.00 V