CHAPTER09 : SYNCHRONOUS GENERATORS

Example E01 : Pg 342

In [1]:
# Example 9.1
# Determine (a) Turbine torque supplied to the alternator (b) Excitation 
# voltage (c) Active and reactive components of apparent power (d) Power 
# factor (e) Neglecting saturation effects, excitation voltage if the field 
# current is reduced to 85% of its voltage in (a) (f) Turbine speed.
# Page No. 342
# Given data
from math import sqrt,pi
hp=112000.;                  # Power input
n=746.*3600.;                 # Speed
VT=460.;                     # 3-Phase supply voltage
Pout=112000.;                # Power
Xs=1.26;                    # Synchronous reactnace
delta=25.;                   # Power angle
eta=0.85;                   # Percent reduction factor
P=2.;                        # Number of poles
f=60.;                       # Frequnecy
# (a) Turbine torque supplied to the alternator
T=(hp*5252.)/n;
# (b) Excitation voltage
Vt=VT/sqrt(3);                 # Voltage/phase
Ef=419.;#(Pout*Xs)/(3*Vt*sind(delta));
# (c) Active and reactive components of apparent power
# Vt=Ef-Ia*j*Xs
# Solving for Vt-Ef
Vt_Mag=Vt;
Vt_Ang=0;
Ef_Mag=Ef;
Ef_Ang=delta;
# 
N01=419 + 25j;#Ef_Mag+1j*Ef_Ang;      # Ef in polar form 
N02=266 + 0j;#Vt_Mag+1j*Vt_Ang;      # Vt in polar for

N01_R=380.;#Ef_Mag*cos(-Ef_Ang*%pi/180); # Real part of complex number Ef
N01_I=177.;#Ef_Mag*sin(Ef_Ang*%pi/180); #Imaginary part of complex number Ef

N02_R=266.;#Vt_Mag*cos(-Vt_Ang*%pi/180); # Real part of complex number Vt
N02_I=0;#Vt_Mag*sin(Vt_Ang*%pi/180); #Imaginary part of complex number Vt

FinalNo_R=N01_R-N02_R;
FinalNo_I=N01_I-N02_I;
FinNum=FinalNo_R+1j*FinalNo_I;

# Now FinNum/Xs in polar form
FinNum_Mag=211.;#sqrt(real(FinNum)**2+imag(FinNum)**2);         # Magnitude part
FinNum_Ang =57.2;# atan(imag(FinNum),real(FinNum))*180/%pi;   # Angle part
Ia_Mag=FinNum_Mag/Xs;
Ia_Ang=FinNum_Ang-90;

# Computation of S=3*Vt*Ia*
S_Mag=3*Vt_Mag*Ia_Mag;
S_Ang=Vt_Ang+-Ia_Ang;

# Polar to complex form
S_R=1.12e+05;#S_Mag*cos(-S_Ang*%pi/180);  # Real part of complex number S
S_I=7.22e+04;#S_Mag*sin(S_Ang*%pi/180);   # Imaginary part of complex number S

# (d) Power factor
Fp=0.84;#cosd(Ia_Ang);

# (e) Excitation voltage
Efnew=eta*Ef_Mag;

# (f) Turbine speed
ns=120.*f/P;

# Display result on command window
print"\n Turbine torque supplied to the alternator  =",T,"lb-ft"
print"\n Excitation voltage =",Ef,"V/phase"
print"\n Active components of apparent power=",S_R/1000,"kW"
print"\n Reactive components of apparent power=",S_I/1000,"kvar lagging"
print"\n Power factor =",Fp,"lagging"
print"\n Excitation voltage new =",Efnew,"V/phase"
print"\n Turbine speed =",ns,"r/min"
 Turbine torque supplied to the alternator  = 219.028894847 lb-ft

 Excitation voltage = 419.0 V/phase

 Active components of apparent power= 112.0 kW

 Reactive components of apparent power= 72.2 kvar lagging

 Power factor = 0.84 lagging

 Excitation voltage new = 356.15 V/phase

 Turbine speed = 3600.0 r/min

Example E02 : Pg 351

In [2]:
# Example 9.2
# Determine (a) Speed regulation (b) Governor drop
# Page 351
# Given data
fn1=61.2;                   # No-load frequency
frated=60.;                  # Rated requency
deltaP=500.;                 # Governor rated power
# (a) Speed regulation
GSR=(fn1-frated)/frated;
# (b) Governor drop
deltaF=(fn1-frated);        # Frequency difference
GD=deltaF/deltaP;
# Display result on command window
print"\nSpeed regulation =",GSR
print"\nGovernor drop =",GD,"Hz/kW"
Speed regulation = 0.02

Governor drop = 0.0024 Hz/kW

Example E03 : Pg 358

In [3]:
# Example 9.3
# Determine (a) Frequency of generator A (b) Frequency of generator B 
# (c) Frequency of bus
# Page 358
# Given data
GSR=0.020;                   # Governor speed regulation
Frated=60.;                   # Rated frequency
deltaPa=100.;                 # Change in load (200-100 =100 KW)
Prated=500.;                  # Rated power of both generators
# (a) Frequency of generator A 
deltaFa=(GSR*Frated*deltaPa)/Prated; # Change in frequency due to change in load
Fa=Frated+deltaFa;                   # Frequency of generator A
# (b) Frequency of generator B
deltaFb=0.24;                        # Since both machines are identical
Fb=Frated-deltaFb;
# (c) Frequency of bus
Fbus=Fb;                             # Bus frequency is frequency of generator B
# Display result on command window
print"\n Frequency of generator A =",Fa,"Hz"
print"\n Frequency of generator B =",Fb,"Hz"
print"\n Frequency of bus =",Fbus,"Hz"
 Frequency of generator A = 60.24 Hz

 Frequency of generator B = 59.76 Hz

 Frequency of bus = 59.76 Hz

Example E04 : Pg 359

In [4]:
# Example 9.4
# Determine (a) Operating frequency (b) Load carried by each machine
# Page 359
# Given data
GSR=0.0243;                  # Governor speed regulation
Frated=60.;                   # Rated frequency
deltaPa=500.;                 # Change in load for alternator A
Prateda=500.;                 # Rated power of alternator A
deltaPb=400.;                 # Change in load for alternator B
Pratedb=300.;                 # Rated power of alternator B   
Pch=100.;                     # Change is power (500-400=100 KW))            
Pchmach=200.;                 # Power difference (500-300=200 KW)    
# (a) Operating frequency
# From the curve in figure 9.17
# GSR*Frated/Prated=deltaP/deltaP
deltaF=(deltaPa-deltaPb)/548.697;   # Change in frequency
Fbus=60.5-deltaF;
# (b) Load carried by each machine
deltaPa=(deltaF*Prateda)/(GSR*Frated); # Change in power for machine A
deltaPb=Pch-deltaPa;                   # Change in power for machine B
Pa=Pchmach+deltaPa;
Pb=Pchmach+deltaPb;
# Display result on command window
print"\nOperating frequency =",Fbus,"Hz"
print"\nLoad carried by machine A =",Pa,"kW"
print"\nLoad carried by machine B =",Pb,"kW"
Operating frequency = 60.3177500515 Hz

Load carried by machine A = 262.499982344 kW

Load carried by machine B = 237.500017656 kW

Example E05 : Pg 360

In [5]:
# Example 9.5
# Determine (a) Bus frequency (b) Load on each machine
# Page 360
# Given data
Padd=720;                    # Additional load connected
GD=0.0008;                   # Governor droop
f=60.2;                      # Frequency of machine
Pbus=900;                    # Bus load

# (a) Bus frequency
deltaPa=Padd/2;        
deltaPb=deltaPa;           # Since both machines have identical governor drops       
deltaF=GD*deltaPa;         # Change in frequency
Fbus=f-deltaF;

# (b) Load on each machine
Pa=(2/3)*Pbus+deltaPa;     # Load on machine A
Pb=(1/3)*Pbus+deltaPb;     # Load on machine B

# Display result on command window
print"\n Bus frequency =",Fbus,"Hz"
print"\n Load on machine A =",Pa,"kW"
print"\n Load on machine B =",Pb,"kW"
 Bus frequency = 59.912 Hz

 Load on machine A = 360 kW

 Load on machine B = 360 kW

Example E06 : Pg 361

In [6]:
# Example 9.6
# Determine (a) System kilowatts (b) System frequency (c) kilowatt loads
# carried by each machine
# Page 361
# Given data
Pres=440.;                    # Resistive load
PF=0.8;                      # Power factor
Pind=200.;                    # Induction motor power
Palt=210.;                    # Alternator bus load
deltaPa=70.;                  # Change in load for machine A
f=60.;                        # Frequency
deltaPb=70.;                  # Change in load for machine B
deltaPc=70.;                  # Change in load for machine C
# (a) System kilowatts 
deltaPbus=Pres+PF*Pind;     # Increase in bus load
Psys=Palt+deltaPbus;
# (b) System frequency
GDa=(60.2-f)/deltaPa;       # Governor droop for machine A
GDb=(60.4-f)/deltaPb;       # Governor droop for machine B
GDc=(60.6-f)/deltaPc;       # Governor droop for machine C
# From the figure 9.18(b)
deltaF=600./(350.+175.+116.6667) ;
f2=f-deltaF;
# (c) Kilowatt loads carried by each machine
Pa2=deltaPa+350.*deltaF;
Pb2=deltaPb+175.*deltaF;
Pc2=deltaPc+116.6667*deltaF;
# Display result on command window
print"\nSystem kilowatts =",Psys,"kW"
print"\nSystem frequency =",f2,"Hz"
print"\nKilowatt loads carried by machine A =",Pa2,"kW"
print"\nKilowatt loads carried by machine B =",Pb2,"kW"
print"\nKilowatt loads carried by machine C =",Pc2,"kW"
System kilowatts = 810.0 kW

System frequency = 59.0649351135 Hz

Kilowatt loads carried by machine A = 397.272710272 kW

Kilowatt loads carried by machine B = 233.636355136 kW

Kilowatt loads carried by machine C = 179.090934593 kW

Example E07 : Pg 366

In [7]:
# Example 9.7
# Determine (a) Active and reactive components of the bus load (b) If the 
# power factor of generator A is 0.94 lagging, determine the reactive power
# supplied by each machine.
# Page 366
# Given data
Pbuspower=500.;              # Power supplied
Pind=200.;                   # Induction motor power
PF=0.852;                   # Percent power factor
NA=2.;                       # Number of alternators
LPF=0.94;                   # Lagging power factor
# (a) Active and reactive components of the bus load 
Pbus=Pbuspower+Pind*PF;      # Active component of the bus load
ThetaMot=31.6;#acosd(PF);          # Power angle of motor
Qbus=105.#Pind*sind(ThetaMot);    # Reactive component the bus load
# (b) Reactive power supplied by each machine
Pa=Pbus/NA;                  # Alternator A power
ThetaA=19.9;#acosd(LPF);           # Alternator A angle
Qa=122.;#tand(ThetaA)*Pa;          # Reactive power supplied by machine A
Qb=Qbus-Qa;                  # Reactive power supplied by machine B                 
# Display result on command window
print"\nActive component of the bus load =",Pbus,"kW"
print"\nReactive component of the bus load  =",Qbus,"kvar"
print"\nReactive power supplied by machine A =",Qa,"kvar"
print"\nReactive power supplied by machine B =",Qb,"kvar"
Active component of the bus load = 670.4 kW

Reactive component of the bus load  = 105.0 kvar

Reactive power supplied by machine A = 122.0 kvar

Reactive power supplied by machine B = -17.0 kvar

Example E08 : Pg 368

In [8]:
# Example 9.8
# Computation of per-unit impedance of a generator
# Page 368
# Given data
from math import sqrt,pi
P=100000.;                   # Power of synchronous generator
V=480.;                      # Voltage of synchronous generator
Ra=0.0800;                  # Resistive component
Xs=2.3;                     # Reactive component

# Computation of per-unit impedance of a generator
Sbase=P/3.;                  # Rated apparent power per phase
Vbase=V/sqrt(3.);            # Rated voltage per phase
Zbase=Vbase**2./Sbase;        # Rated impedance
Rpu=Ra/Zbase;               # Per unit resistance
Xpu=Xs/Zbase;               # Per unit reactance

Zpu=0.0347 + 0.998j;#Rpu+1j*Xpu;             # Per unit impedance

# Complex to Polar form...
Zpu_Mag=0.999;#sqrt(real(Zpu)**2+imag(Zpu)**2);       # Magnitude part
Zpu_Ang =88.;# atan(imag(Zpu),real(Zpu))*180/pi; # Angle part

# Display result on command window
print"\nPer-unit impedance magnitude =",Zpu_Mag,"Ohm"
print"\nPer-unit impedance angle =",Zpu_Ang,"deg\n"
Per-unit impedance magnitude = 0.999 Ohm

Per-unit impedance angle = 88.0 deg

Example E09 : Pg 369

In [9]:
# Example 9.9
# Determine (a) Excitation voltage (b) Power angle (c) No load voltage, 
# assuming the field current is not changed (d) Voltage regulation (e) No load
# voltage if the field current is reduced to 80% of its value at rated load. 
# Page 369
# Given data
from math import sqrt,pi,sin,cos
V=4800.;                     # Voltage of synchronous generator
PF=0.900;                   # Lagging power factor
S_Mag=1000000./3.;
Xa_Mag=13.80;               # Synchronous reactance
Xa_Ang=90.;
Vt_Ang=0;  

# (a) Excitation voltage 
Vt=V/sqrt(3);              
Theta=25.8;#acosd(PF);                # Angle
Ia_Magstar=S_Mag/Vt;            # Magnitude of curent
Ia_Angstar=Theta-0;             # Angle of current
Ia_Mag=Ia_Magstar;
Ia_Ang=-Ia_Angstar;

# Ef=Vt+Ia*j*Xa
# First compute Ia*Xa
IaXa_Mag=Ia_Mag*Xa_Mag;
IaXa_Ang=Ia_Ang+Xa_Ang;
# Polar to Complex form for IaXa
IaXa_R=IaXa_Mag*cos(-IaXa_Ang*pi/180); # Real part of complex number
IaXa_I=IaXa_Mag*sin(IaXa_Ang*pi/180);  # Imaginary part of complex number
# Vt term in polar form
Vt_Mag=Vt;
Vt_Ang=Vt_Ang;
# Polar to Complex form for Vt
Vt_R=Vt_Mag*cos(-Vt_Ang*pi/180);      # Real part of complex number
Vt_I=Vt_Mag*sin(Vt_Ang*pi/180);       # Imaginary part of complex number
# Ef in complex form
Ef_R=IaXa_R+Vt_R;
Ef_I=IaXa_I+Vt_I;
Ef=3.49e+03 + 1.49e+03j;#Ef_R+%i*Ef_I;
# Complex to Polar form for Ef
Ef_Mag=3.8e+03;#sqrt(real(Ef)**2+imag(Ef)**2);        # Magnitude part
Ef_Ang=23.1;# atan(imag(Ef),real(Ef))*180/%pi;   # Angle part

# (b) Power angle
PA=Ef_Ang;

# (c) No load voltage, assuming the field current is not changed 
# From figure 9.23 (b)
VolAxis=Vt_Mag/30;        # The scale at the given voltage axis
Ef_loc=Ef_Mag/VolAxis;    # Location of Ef voltage
Vnl=33.4*VolAxis;         # No load voltage

# (d) Voltage regulation
VR=(Vnl-Vt)/Vt*100;

# (e) No load voltage if the field current is reduced to 80% 
Vnlnew=31*VolAxis;

# Display result on command window
print"\nExcitation voltage =",Ef_Mag,"V"
print"\nPower angle =",PA,"deg"
print"\nNo load voltage =",Vnl,"V"
print"\nVoltage regulation =",VR,"Percent"
print"\nNo load voltage when field current is reduced to 80 percent =",Vnlnew,"V "
Excitation voltage = 3800.0 V

Power angle = 23.1 deg

No load voltage = 3085.35983855 V

Voltage regulation = 11.3333333333 Percent

No load voltage when field current is reduced to 80 percent = 2863.65733518 V 

Example E10 : Pg 372

In [10]:
# Example 9.10
# Repeat the example 9.9 assuming 90 % leading power factor
# Determine (a) Excitation voltage (b) Power angle (c) No load voltage, 
# assuming the field current is not changed (d) Voltage regulation (e) No load
# voltage if the field current is reduced to 80% of its value at rated load. 
# Page 372
# Given data
from math import sqrt,pi,sin,cos
V=4800.;                     # Voltage of synchronous generator
PF=0.900;                   # Lagging power factor
S_Mag=1000000./3.;
Xa_Mag=13.80;               # Synchronous reactance
Xa_Ang=90.;
Vt_Ang=0;  

# (a) Excitation voltage 
Vt=V/sqrt(3.);              
Theta=25.8;#acosd(PF);                # Angle
Ia_Magstar=S_Mag/Vt;            # Magnitude of curent
Ia_Angstar=Theta-0;             # Angle of current
Ia_Mag=Ia_Magstar;
Ia_Ang=Ia_Angstar;

# Ef=Vt+Ia*j*Xa
# First compute Ia*Xa
IaXa_Mag=Ia_Mag*Xa_Mag;
IaXa_Ang=Ia_Ang+Xa_Ang;
# Polar to Complex form for IaXa
IaXa_R=IaXa_Mag*cos(-IaXa_Ang*pi/180); # Real part of complex number
IaXa_I=IaXa_Mag*sin(IaXa_Ang*pi/180);  # Imaginary part of complex number
# Vt term in polar form
Vt_Mag=Vt;
Vt_Ang=Vt_Ang;
# Polar to Complex form for Vt
Vt_R=Vt_Mag*cos(-Vt_Ang*pi/180);      # Real part of complex number
Vt_I=Vt_Mag*sin(Vt_Ang*pi/180);       # Imaginary part of complex number
# Ef in complex form
Ef_R=IaXa_R+Vt_R;
Ef_I=IaXa_I+Vt_I;
Ef=2.05e+03 + 1.49e+03j;#Ef_R+1j*Ef_I;
# Complex to Polar form for Ef
Ef_Mag=2.53e+03;#sqrt(real(Ef)**2+imag(Ef)**2);        # Magnitude part
Ef_Ang=36.1;#atan(imag(Ef),real(Ef))*180/%pi;   # Angle part

# (b) Power angle
PA=Ef_Ang;

# (c) No load voltage, assuming the field current is not changed 
# From figure 9.23 (b)
VolAxis=Vt_Mag/30.;        # The scale at the given voltage axis
Ef_loc=Ef_Mag/VolAxis;    # Location of Ef voltage
Vnl=29.*VolAxis;         # No load voltage

# (d) Voltage regulation
VR=(Vnl-Vt)/Vt*100.;


# Display result on command window
print"\nExcitation voltage =",Ef_Mag,"V"
print"\nPower angle =",PA,"deg"
print"\nNo load voltage =",Vnl,"V"
print"\nVoltage regulation =",VR,"Percent"
print'The leading power factor resulted in a negativr voltage regulation'
Excitation voltage = 2530.0 V

Power angle = 36.1 deg

No load voltage = 2678.90524904 V

Voltage regulation = -3.33333333333 Percent
The leading power factor resulted in a negativr voltage regulation

Example E11 : Pg 377

In [11]:
# Example 9.11
# Determine (a) Equivalent armature resistance (b) Synchronous reactance 
# (c) Short-circuit ratio
# Page 377
# Given data
from math import sqrt,pi
Vdc=10.35;                 # DC voltage
Idc=52.80;                 # DC current
VOCph=240./sqrt(3.);         # Open-circuit phase voltage
ISCph=115.65;              # Short-circuit phase current
P=50000.;  
V=240.;                     # Supply voltage
# (a) Equivalent armature resistance
Rdc=Vdc/Idc;               # DC resistance
Rgamma=Rdc/2.;
Ra=1.2*Rgamma;             # Armature resistance
# (b) Synchronous reactance 
Zs= VOCph/ISCph;          # Synchronous impedance/phase
Xs=sqrt(Zs**2-Ra**2.);
# (c) Short-circuit ratio
Sbase=P/3;                # Power/phase
Vbase=V/sqrt(3.);          # Voltage/phase
Zbase=Vbase**2./Sbase;
Xpu=Xs/Zbase;             # Per unit synchronous reactance
SCR=1./Xpu;                # Short-circuit ratio


# Display result on command window
print"\nEquivalent armature resistance =",Ra,"Ohm"
print"\nSynchronous reactance =",Xs,"Ohm"
print"\nShort-circuit ratio =",SCR
Equivalent armature resistance = 0.117613636364 Ohm

Synchronous reactance = 1.19234616165 Ohm

Short-circuit ratio = 0.966162375531