Chapter 3 : The Amplitude Modulation

Example 1 : pg 105

In [1]:
# page no 105
# prob no 3.1
#calculate the Voltage equation
from math import pi, sqrt
# given
Erms_car=2; f_car=1.5*10**6;f_mod=500;Erms_mod=1;
# Equation requires peak voltages & radian frequencies
#calculations
Ec=sqrt(2)*Erms_car; Em=sqrt(2)*Erms_mod;
wc=2*pi*f_car; 
wm=2*pi*f_mod;t=1;
#results
# Therefore the equation is 
print 'V(t) = (',round(Ec,2),'+ ',round(Em,2),'*sin(',round(wm),'*t))*sin(',round(wc),'*t) V'
#print 'v(t) = (2.83+1.41*sin(3.14*10**3*t))*sin(9.42*10**6*t) V'
V(t) = ( 2.83 +  1.41 *sin( 3142.0 *t))*sin( 9424778.0 *t) V

Example 2 : pg 106

In [2]:
#page no 106
#prob no 3.2
#calculate the voltage equation
# To avoid the round-off errors we should use the original voltage values
#given
Em=1.;Ec=2.;
#Calculations
m=Em/Ec;
#results
print 'm =',m
print 'The equation can be obtained as','v(t) = 2.83(1+ ',m,'*sin(3.14*10**3*t))*sin(9.42*10**6*t) V',
m = 0.5
The equation can be obtained as v(t) = 2.83(1+  0.5 *sin(3.14*10**3*t))*sin(9.42*10**6*t) V

Example 3 : pg 109

In [3]:
#page no 109
#prob no 3.3
#calculate the modulation index
from math import sqrt
#given
E_car=10.;E_m1=1.;E_m2=2.;E_m3=3.;
#calculations
m1=E_m1/E_car;
m2=E_m2/E_car;
m3=E_m3/E_car;
mT=sqrt(m1**2+m2**2+m3**2);
#results
print 'The modulation index is',round(mT,3)
The modulation index is 0.374

Example 4 : pg 110

In [4]:
#page no 110
#prob no 3.4
#calculate the modulation index
#refer fig 3.2
#given
E_max=150.; E_min=70;# voltages are in mV
#calculations
m=(E_max-E_min)/(E_max+E_min);
#results
print 'The modulation index is',round(m,3)
The modulation index is 0.364

Example 6 : pg 114

In [5]:
#page no 114
#prob no 3.6
#calculate the max modulation frequency
#given
B=10.*10**3;
#calculations
# maximum modulation freq is given as 
fm=B/2;
#results
print 'The maximum modulation freq is',fm,'Hz'
The maximum modulation freq is 5000.0 Hz

Example 7 : pg 116

In [6]:
#page no 116
#prob no 3.7
# AM broadcast transmitter
#calculate the total power
#given
Pc=50.;m=0.8;#power is in kW
#calculations
Pt=Pc*(1+m**2 /2);
#results
print 'The total power is',Pt,'kW'
The total power is 66.0 kW

Example 8 : pg 118

In [7]:
# page no 118
# prob no 8.6
#calculate the signal frequency
#2 kHz tone is present on channel 5 of group 3 of supergroup
#signal is lower sided so
#given
fc_channel_5=92*10**3;
#calculations
fg=fc_channel_5 - (2*10**3);# 2MHz baseband signal
# we know group 3 in the supergroup is moved to the range 408-456 kHz with a suppressed carrier frequency of 516kHz
f_s_carr=516*10**3;
fsg=f_s_carr - fg;
#results
print'The Signal Frequency in Hz =',fsg;
The Signal Frequency in Hz = 426000

Example 9 : pg 122

In [10]:
#page no 122
#prob no. 3.9
#calculate the total power, modulating frequency and carrier frequency
# refer fig 3.14
#given
# from spectrum we can see that each of the two sidebands is 20dB below the ref level of 10dBm. 
#Therefore each sideband has a power of -10dBm i.e. 100uW.
power_of_each_sideband = 100.;
#calculations and results
Total_power = 2.* power_of_each_sideband;
print 'The total power is',Total_power,'uW'
div=4; freq_per_div=1.;
sideband_separation = div * freq_per_div;
f_mod= sideband_separation/2;
print 'The modulating freq is ',f_mod,'kHz'
# Even if this siganl has no carrier, it still has a carrier freq which is midway between the two sidebands. Therefore
carrier_freq = 10.;
print 'The carrier freq',carrier_freq,'MHz'
The total power is 200.0 uW
The modulating freq is  2.0 kHz
The carrier freq 10.0 MHz

Example 10 : pg 126

In [9]:
# page no 126
# prob no 3.10
#calculate the o/p frequency in both cases
#given
f_car=8*10**6;f_mod1=2*10**3;f_mod2=3.5*10**3;
#calculations
#Signal is LSB hence o/p freq is obtained by subtracting f_mod from f_car
f_out1=f_car-f_mod1; 
f_out2=f_car-f_mod2; 
#results
print 'The o/p freq f_out1 is ',f_out1/(10**6),'MHz'
print 'The o/p freq f_out2 is ',f_out2/(10**6),'MHz'
The o/p freq f_out1 is  7 MHz
The o/p freq f_out2 is  7.9965 MHz

Example 11 : pg 127

In [11]:
# page no 127
# prob no 3.11
#calculate the value of average power of signal
from math import sqrt
#Refering the fig. 3.17
#From fig it is clear that thee waveform is made from two sine waves 
#given
Vp=12.5;#Since Vp-p is 25V from fig hence individual Vp is half of Vp-p
Rl=50.;#Load resistance is 50 ohm
#Determination of average power
#calculations
Vrms=Vp/sqrt(2);
P=((Vrms)**2)/Rl;
#results
print 'The value of average power of signal is ',P,'W'
The value of average power of signal is  1.5625 W