import math
from __future__ import division
#variable declaration
r1 = 7; #in radians
r2 = 3; #in radians
d1 = 4; #Converting from mm to radians
d2 = 6; #Converting from mm to radians
#calculations
D = (r2-r1)/(d2*10**3-d1*10**3) #Divergence
#Result
print "Divergence =",round(D*10**3,3),"*10**-3 radian"
import math
from __future__ import division
#variable declaration
C=3*10**8 #The speed of light
Lamda=6943 #Wavelength
T=300 #Temperature in Kelvin
h=6.626*10**-34 #Planck constant
k=1.38*10**-23 #Boltzmann's constant
#Calculations
V=(C)/(Lamda*10**-10) #Frequency
R=math.exp(h*V/(k*T)) #Relative population
#Result
print "Frequency (V) =",round(V/10**14,2),"*10**14 Hz"
print "Relative Population=",round(R/10**30,3),"*10**30"
import math
from __future__ import division
#variable declaration
C=3*10**8 #Velocity of light
W=632.8*10**-9 #wavelength
P=2.3
t=1
h=6.626*10**-34 #Planck constant
S=1*10**-6
#Calculations
V=C/W #Frequency
n=((P*10**-3)*t)/(h*V) #no.of photons emitted
PD=P*10**-3/S #Power density
#Result
print "Frequency=",round(V/10**14,2),"*10**14 Hz"
print "no.of photons emitted=",round(n/10**15,3),"*10**15 photons/sec"
print "Power density =",round(PD/1000,1),"kWm**-2"
import math
from __future__ import division
#variable declaration
h=6.626*10**-34 #Planck constant
C=3*10**8 #Velocity of light
E_g=1.44 #bandgap
#calculations
lamda=(h*C)*10**10/(E_g*1.6*10**-19) #Wavelenght
#Result
print "Wavelenght =",round(lamda),"Angstrom"
import math
from __future__ import division
#variable declaration
W=1.55 #wavelength
#Calculations
E_g=(1.24)/W #Bandgap in eV
#Result
print "Band gap =",E_g,"eV"