#Variable declaration
f=15.0 #focal length in cm
v=10.0 #image distance in cm
#Calculation
u=1/((1/v)-(1/f)) #calculating u using (1/f)=(1/v)-(1/u)
#Result
print"Object Distance ,u= ",u,"cm"
#Variable declaration
f=80.0 #focal length in cm
f1=20.0 #focallength of first lens in cm
#Calculation
f2=1/((1/f)-(1/f1)) #using (1/F)=(1/f1)+(1/f2)
P=(100.0/f) #power in D
P1=100.0/20 #power of first lens
P2=P1-P #power in D
#Variable declaration
print"Power= ",P2,"D"
#Variable declaration
P=2.5 #Power in D
#Calculation
f=-(1/P) #calculating f in m
#Result
print"Focal length =",f,"m"
#Variable declaration
m=4 #magnigication
f=20 #focal length in cm
#Calculation
u=(20*3)/(4) #on simplifying (1/f)=(1/v)-(1/u)
v=(4*u) #calculating v in cm
#Result
print"Object distance,u= ",u,"cm"
print"Image distance,v= ",v,"cm"
from scipy.optimize import fsolve
#Variable declaration
u=14.0 #object distance in cm
f=-21.0 #focal distance in cm
#Calculation
v=1/((1/f)-(1/u))
I=(3.0*v)/(-u) #using m=(1/0)=(v/u)
#Result
print"Image distance= ",v,"cm"
print"I= ",I,"cm"
#Variable declaration
fe=5 #focal length in cm
D=25 #distance od distinct vision in cm
#Calculation
m=1+(D/fe) #calculating magnifying power
#Result
print"magnifying Power = ",m
#Variable declaration
fe=5 #focal length in cm
D=25 #distance od distinct vision in cm
#Calculation
mo=30/(1+(D/fe)) #calculating magnification of objective lens
#Result
print"Magnification produced by objective lens = ",mo
#Variable declaration
u=-6.0 #object distance in cm
fo=4.0 #focal distance in cm
fe=6.0 #focal length in cm
D=25.0 #distance of distinct vision in cm
#Calculation
v=1/((1/u)+(1/fo)) #using (1/f)=(1/v)-(1/u)
m=(v/u)*(1+(D/fe)) #calculating m
#Result
print"Image distance in cm = ",v,"cm"
print"Magnifying Power = ",round(-m,2)
#Variable declaration
D=25.0 #distance of distinct vision
u=-9.0 #object distance in cm
fe=10.0 #focal length in cm
#Calculation
v=1/((1/fe)+(1/u)) #using (1/f)=(1/v)-(1/u)
m=(v/u) #calculating m
M=D/u #calculating Magnifying power of lens
#Result
print"Magnification of lens = ",m
print"Magnifying Power = ",round(-M,1)
#Variable declaration
fo=0.5 #focal length of eye lens
D=25 #distance of distinct vision
L=15 #length in cm
m=375 #magnification
#Calculation
fe=(-L*D)/(fo*((L/fo)-m)) #calculating fe
#Result
print"Focal length of eye lens= ",round(fe,1),"cm"
#Variable declaration
m=5 #magnifying power
L=24 #length in cm
fe=4 #focal length in cm
#Calculation
fo=5*fe #calculating fo
#Result
print"Focal length of lens = ",fo,"cm"
#Variable declaration
D=25.0 #distance of distinct vision in cm
fo=140.0 #focal length of eye lens
fe=5.0 #focal length in cm
#Calculation
m=-(fo/fe) #calculating magnifying power
m1=-(fo/fe)*(1+(fe/D)) #calculating magnifying power
#Result
print"(a):Magnifying power at normal adjustment = ",m
print"(b):Magnifying power atleast distance of distinct vision = ",m1
#Variable declaration
M=5 #Magnifying power
fo=10 #focal length of eye lens
#Calculation
fe=fo/M #calculating fe
#Result
print"Focal length of eye lens= ",fe,"cm"
#Variable declaration
fo=75.0 #focal length of eye lens
D=25.0 #distance of distinct vision
fe=5.0 #focal of eye lens in cm
#Calculation
M=-(fo/fe)*(1+(fe/D)) #calculating M
#Result
print"Magnifying power = ",M
#Variable declaration
M=7 #magnifying power
L=40 #length
#Calculation
fe=(L/(M+1)) #focal length of eye lens in cm
fo=(M*fe) #calculating focal length
#Result
print"Focal Length of lens=",fo,"cm"