# Variables
D = 15.*10**-3;
P = 300.*10**3;
sm = 300.*10**6;
# Calculations and Results
t = (3*D**2*P/(16*sm))**0.5;
print " thickness(m) = ", t
P = 150*10**3;
v = 0.28;
E = 200*10**9;
dm = 3*(1-v**2)*D**4*P/(256*E*t**3);
print " deflection at center for Pressure of 150 kN/m2(m) = ", dm
import math
T = 100.;
G = 80.*10**9;
d = 2.*15*10**-3;
# Calculations
th = 16*T/(math.pi*G*d**3)
# Results
print " angle of twist(rad) = ", th
import math
# Variables
E = 110*10**9;
t = 0.073*10**-3;
b = 0.51*10**-3;
l = 370*10**-3;
# Calculations
th = math.pi/2;
T = (E*b*t**3)*th/(12*l);
# Results
print " Controlling torque(Nm) = ", T
import math
# Variables
Rnormal = 10000./2;
Rpl = 10000./50;
Rc1 = Rnormal-3850;
# Calculations and Results
Dnormal = Rc1/Rpl;
print "Displacement(mm) = ", Dnormal
Rc2 = Rnormal-7560;
Dnormal = Rc2/Rpl;
print "Displacement(mm) = ", Dnormal
print "since one lacement is positive and other is negative so two lacements are in the opposite direction"
Re = 10*1./200;
print "Resolution (mm) = ", Re
%matplotlib inline
import math
from matplotlib.pyplot import plot
# Variables
# plot the graph of error versus K
K = [0, 0.25, 0.5, 0.75, 1];
V = [0, -0.174, -0.454, -0.524, 0];
# Results
plot(K,V)
# Variables
RAB = 125.;
Rtotal = 5000.;
R2 = 75/125.*Rtotal;
R4 = 2500.;
ei = 5.;
# Calculations
eo = ((R2/Rtotal)-(R4/Rtotal))*ei;
# Results
print "output voltage (V) = ", eo
# Variables
Rm = 10000.;
Rp = Rm/15.;
R = 600.;
P = 5.;
# Calculations and Results
ei = (P*R)**0.5;
print "Maximum excitation voltage (V) = ", ei
S = ei/360;
print "Sensitivity (V/degree) = ", S
# Variables
Rwga = 1./400;
# Calculations
Re = Rwga/5;
# Results
print "Resolution (mm) = ", Re
# Variables
mo = 0.8;
sr = 250;
sm = sr/mo;
# Calculations and Results
R = sm*1;
print "resolution of 1mm movement", R
Rq = 300/1000;
print "resolution required = ", Rq
print "since the resolution of potentiometer is higher than the resolution required so it is suitable for the application",
# Calculations and Results
Pd = (10.**2)/150;
print "Power dissipation (W) = ", Pd
th_pot = 80.+Pd*30*10**-3;
PDa = 1-(10*10**-3)*(th_pot-35);
print "Power dissipation allowed(W) = ", PDa
print "Since power dissipation is higher than the dissipation allowed so potentiometer is not suitable"
# Variables
Gf = 4.2;
# Calculations
v = (Gf-1)/2;
# Results
print "Possion s ratio = ", v
# Variables
strain = -5.*10**-6;
Gf = -12.1;
R = 120.;
# Calculations and Results
dR_nickel = Gf*R*strain;
print "change in resistance of nickel(ohm) = ", dR_nickel
Gf = 2;
R = 120;
dR_nicrome = Gf*R*strain;
print "change in resistance of nicrome(ohm) = ", dR_nicrome
# Variables
s = 100.*10**6;
E = 200.*10**9;
# Calculations
strain = s/E;
Gf = 2;
r_perunit = Gf*strain*100;
# Results
print "Percentage change in resistance = ", r_perunit
# Variables
b = 0.02;
d = 0.003;
I = (b*d**3)/12;
E = 200*10**9;
x = 12.7*10**-3;
l = 0.25;
F = 3*E*I*x/l**3;
x = 0.15;
M = F*x;
t = 0.003;
# Calculations
s = (M*t)/(I*2);
strain = s/E;
dR = 0.152;
R = 120;
Gf = (dR/R)/strain;
# Results
print "Gauge factor = ", Gf
# Variables
dR = 0.013;
R = 240;
l = 0.1;
Gf = 2.2;
# Calculations and Results
dl = (dR/R)*l/Gf;
print "change in length(m) = ", dl
strain = dl/l;
E = 207*10**9;
s = E*strain;
A = 4*10**-4;
F = s*A;
print "Force(N)", F
# Variables
th1 = 30.;
th2 = 60.;
th0 = th1+th2/2;
Rth1 = 4.8;
Rth2 = 6.2;
Rth0 = 5.5;
# Calculations
ath0 = (1/Rth0)*(Rth2-Rth1)/(th2-th1);
# Results
print "alpha at o degree(/degree C) = ", ath0
print "5.5[1+0.0085(th-45)]",
# Variables
th1 = 100.;
th2 = 130.;
# Calculations
th0 = th1+th2/2;
Rth1 = 573.40;
Rth2 = 605.52;
Rth0 = 589.48;
ath0 = (1/Rth0)*(Rth2-Rth1)/(th2-th1);
# Results
print "alpha at o degree(/degree C) = ", ath0
print "Linear approximation is: Rth = 589.48[1+0.00182(th-115)]",
# Variables
Rth0 = 100.;
ath0 = 0.00392;
dth = 65.-25;
# Calculations and Results
R65 = Rth0*(1+ath0*dth);
print "resistance at 65 degree C(ohm) = ", R65
th = (((150./100)-1)/ath0)+25;
print "Temperature (degree C)", th
# Variables
Rth0 = 10;
ath0 = 0.00393;
dth = 150-20;
# Calculations
R150 = Rth0*(1+ath0*dth);
# Results
print "resistance at 150 degree C(ohm) = ", R150
# Variables
th = 30.;
th0 = 50.;
tc = 120.;
# Calculations
t = -120*(math.log(1-(th/th0)));
# Results
print "time(s) = ", t
# Variables
R25 = 100;
ath = -0.05;
dth = 35-25;
# Calculations
R35 = R25*(1+ath*dth);
# Results
print "resistance at 35 degree C(ohm) = ", R35
import math
# Variables
Ro = 3980.;
Ta = 273.;
# Calculations and Results
print "3980 = a*3980*math.exp(b/273)",
Rt50 = 794;
Ta50 = 273+50;
print "794 = a*3980*math.exp(b/323)",
print "on solving",
print " b = 2843", "a = 30*10**-6"
Ta40 = 273+40;
Rt40 = (30*10**-6)*3980*math.exp(2843./313);
print "resistance at 40 degree C (ohm)", Rt40
Rt100 = (30*10**-6)*3980*math.exp(2843./373);
print "resistance at 100 degree C (ohm)", Rt100
# Calculations
th = ((1-1800./2000)/0.05)+70;
dth = th-70;
# Results
print "change in temperature (degree C)", dth
# Variables
C = 500.*10**-12;
R20 = 10000.*(1-0.05*(20-25));
# Calculations and Results
f20 = 1/(2*math.pi*R20*C);
print "Frequency of oscillation at 20 degree C (Hz)", f20
R25 = 10000*(1-0.05*(25-25));
f25 = 1./(2*math.pi*R25*C);
print "Frequency of oscillation at 25 degree C (Hz)", f25
R30 = 10000*(1-0.05*(30-25));
f30 = 1./(2*math.pi*R30*C);
print "Frequency of oscillation at 30 degree C (Hz)", f30
# Calculations and Results
Se_thermocouple = 500-(-72);
print "Sensitivity of thermocouple (micro V/degree C) = ", Se_thermocouple
Vo = Se_thermocouple*100*10**-6;
print "maximum output voltage(V) = ", Vo
# calculations and results
ET = 27.07+0.8;
print 'Required e.m.f.(mV)',ET
print "temperature corresponding to 27.87 mV is 620 degree C",
# Variables
Rm = 50;
Re = 12;
# Calculations and Results
E = 33.3*10**-3;
i = 0.1*10**-3;
Rs = (E/i)-Rm-Re;
print "series resistance (ohm) = ", Rs
Re = 13;
i1 = E/(Rs+Re+Rm);
AE = ((i1-i)/i)*800;
print "approximate error due to rise in resistance of 1 ohm in Re (degree C) = ", AE
R_change = 50*0.00426*10;
i1 = E/(Rs+Re+Rm+R_change);
AE = ((i1-i)/i)*800;
print "approximate error due to rise in Temp. of 10 (degree C) = ", AE
# Variables
E_20 = 0.112*10**-3;# emf at 20degree C
E_900 = 8.446*10**-3;
E_1200 = 11.946*10**-3;
# Calculations and Results
E1 = E_900-E_20;
E2 = E_1200-E_20;
print "E1 = 1.08*R1/(R1+2.5+R2) (i)",
print "E2 = 1.08*(R1+2.5)/(R1+2.5+R2) (ii)",
print "on solving (i) and (ii)",
R1 = 5.95;
R2 = 762.6;
print "value of resistance R1 (ohm) = ", R1
print "value of resistance R2 (ohm) = ", R2
# Calculations
linearity_percentage = (0.003/1.5)*100;
# Results
print "percentage linearity = ", linearity_percentage
# Variables
print "lacement = 0.5"
Vo = 2.*10**-3;
Se_LVDT = Vo
print "lacement "
print "senstivity of the LVDT (V/mm)", Se_LVDT
# Calculations and Results
Af = 250.;
Se_instrument = Se_LVDT*Af;
print "senstivity of instrument (V/mm)", Se_instrument
sd = 5./100;
Vo_min = 50./5;
Re_instrument = 1*1/1000;
print "resolution of instrument in mm", Re_instrument
# Variables
b = 0.02;
t = 0.004;
I = (1./12)*b*t**3;
F = 25.;
l = 0.25;
E = 200.*10**9;
# Calculations and Results
x = (F*l**3)/(3*E*I);
print "deflection (m)", x
DpF = x/F;
Se = DpF*0.5*1000;
Re = (10./1000)*(2./10);
F_min = Re/Se;
F_max = 10/Se;
print "minimum force (N)", F_min
print "maximum force (N)", F_max
print "", Se
print "permittivity of the air e0 = 8.85*10**-12"
# Variables
e0 = 8.85*10**-12;
w = 25*10**-3;
# Calculations
d = 0.25*10**-3;
Se = -4*e0*w/d;
# Results
print "sensitivity of the transducer (F/m) = ", Se
# Variables
C1 = 370*10**-12;
d1 = 3.5*10**-3;
# Calculations
d2 = 2.9*10**-3;
C2 = C1*d1/d2;
# Results
print "the value of the capacitance afte the application of pressure (F) = ", C2
# Variables
fo1 = 100.*10**3;
d1 = 4.;
d2 = 3.7;
# Calculations
fo2 = ((d2/d1)**0.5)*fo1;
dfo = fo1-fo2;
# Results
print "change in frequency of the oscillator (Hz)", dfo
import math
# Variables
L_air = (3.1-3)/2;
D_stress = 100/L_air;
e0 = 8.85*10**-12;
l = 20.*10**-3;
D2 = 3.1;
D1 = 3;
# Calculations and Results
C = (2*math.pi)*e0*l/(math.log(D2/D1));
print "capacitance(F) = ", C
l = (20*10**-3)-(2*10**-3);
C_new = (2*math.pi)*e0*l/(math.log(D2/D1));
C_change = C-C_new;
print "change in capacitance(F) = ", C_change
import math
# Variables
M = 0.95;
w = 2.*math.pi*20;
# Calculations and Results
tc = (1/w)*((M**2)/(1-M**2))**0.5;
print "time constant (s)", tc
ph = ((math.pi/2)-(math.atan(w*tc)))*(180/math.pi);
print "phase shift(deg)", ph
C = (8.85*10**-12*300*10**-6)/(0.125*10**-3);
R = tc/C;
print "series resistance (ohm)", R
M = 1./(1+(1./(2*math.pi*5*tc)**2))**0.5;
print "amplitude ratio = ", M
Eb = 100;
x = 0.125*10**-3;
Vs = Eb/x;
print "voltage sensitivity (V/m)", Vs
import math
# Variables
e0 = 8.85*10**-12;
A = 500*10**-6;
d = 0.2*10**-3;
C = e0*A/d;
d1 = 0.18*10**-3;
C_new = e0*A/d1;
# Calculations and Results
C_change = C_new-C;
Ratio = (C_change/C)/(0.02/0.2);
print "ratio of per unit change of capacitance to per unit change of diaplacement", Ratio
d1 = 0.19*10**-3;
e1 = 1;
d2 = 0.01*10**-3;
e2 = 8;
C = (e0*A)/((d1/e1)+(d2/e2));
d1_new = 0.17*10**-3;
C_new = (e0*A)/((d1_new/e1)+(d2/e2));
C_change = C_new-C;
Ratio = (C_change/C)/(0.02/0.2);
print "ratio of per unit change of capacitance to per unit change of diaplacement", Ratio
# Variables
g = 0.055;
t = 2*10**-3;
P = 1.5*10**6;
# Calculations and Results
Eo = g*t*P;
print "output voltage(V) = ", Eo
e = 40.6*10**-12;
d = e*g;
print "charge sensitivity (C/N) = ", d
# Variables
g = 0.055;
t = 1.5*10**-3;
Eo = 100;
# Calculations
P = Eo/(g*t);
A = 25.*10**-6;
F = P*A;
# Results
print "Force(N) = ", F
# Variables
A = 25.*10**-6;
F = 5.;
P = F/A;
d = 150*10**-12;
e = 12.5*10**-9;
g = d/(e);
t = 1.25*10**-3;
# Calculations
Eo = (g*t*P);
strain = P/(12*10**6);
Q = d*F;
C = Q/Eo;
# Results
print "strain = ", strain
print "charge(C) = ", Q
print "capacitance(F) = ", C
import math
# Variables
d = 2.*10**-12;
t = 1.*10**-3;
Fmax = 0.01;
e0 = 8.85*10**-12;
er = 5.;
# Calculations and Results
A = 100*10**-6;
Eo_peak_to_peak = 2*d*t*Fmax/(e0*er*A);
print "peak voltage swing under open conditions", Eo_peak_to_peak
Rl = 100*10**6;
Cl = 20*10**-12;
d1 = 1*10**-3;
Cp = e0*er*A/d1;
C = Cp+Cl;
w = 1000;
m = (w*Cp*Rl/(1+(w*C*Rl)**2)**0.5);
El_peak_to_peak = (2*d*t*Fmax/(e0*er*A))*m;
print "peak voltage swing under loaded conditions", El_peak_to_peak
E = 90*10**9;
dt = 2*Fmax*t/(A*E);
print "maximum change in crystal thickness (m)", dt
import math
# Variables
M = 0.95;
tc = 1.5*10**-3;
# Calculations and Results
w = (1/tc)*((M**2)/(1-M**2))**0.5;
print "minimum frequency (rad/s)", w
ph = ((math.pi/2)-(math.atan(w*tc)))*(180/math.pi);
print "phase shift(deg)", ph
import math
# Variables
Kq = 40.*10**-3;
Cp = 1000.*10**-12;
# Calculations and Results
K = Kq/Cp;
print "sensitivity of the transducer(V/m)", K
Cc = 300*10**-12;
Ca = 50*10**-12;
C = Cp+Cc+Ca;
Hf = Kq/C;
print "high frequency sensitivity (V/m)", Hf
R = 1*10**6;
tc = R*C;
M = 0.95;
w = (1/tc)*((M**2)/(1-M**2))**0.5;
f = w/(2*math.pi);
print "minimum frequency (s)", w
print "now f = 10Hz",
f = 10;
w = 2*math.pi*f;
tc = (1/w)*((M**2)/(1-M**2))**0.5;
C_new = tc/R;
Ce = C_new-C;
print "external shunt capacitance(F)", Ce
Hf_new = Kq/C_new;
print "new value of high frequency sensitivity (V/m)", Hf_new
import math
#
# Variables
R = 10.**6;
C = 2500.*10**-12;
tc = R*C;
t = 2.*10**-3;
d = 100.*10**-12;
# Calculations and Results
F = 0.1;
el = 10.**3*(d*F*(math.exp(-t/tc))/C);
print "voltage just before t = 2ms (mV)", el
el_after = 10.**3*(d*F*(math.exp(-t/tc)-1)/C);
print "voltage just after t = 2ms (mV)", el_after
print "when t = 10ms",
t = 10.*10**-3;
T = 2.*10
e_10 = 10.**3*(d*F*(math.exp((-T/tc)-1))*(math.exp(-(t-T))/tc)/C)
print "output voltage 10 ms after the application of impulse(mV) ", e_10
import math
# to prove time constant should be approximately 20T to keep undershoot within 5%
# Variables
print "Let T = 1",
T = 1.;
el = 0.95;
# Calculations
tc = -T/math.log(el);
# Results
print "time constant", tc
print "as T = 1 so time constant should be approximately equal to 20T",
# Variables
Kh = -1*10**-6;
I = 3;
B = 0.5;
# Calculations
t = 2.*10**-3;
Eh = Kh*I*B/t;
# Results
print "output voltage (V)", Eh
# Calculations
Th_wavelength = 1.24*10**-6/1.8
# Results
print "Threshold wavelength (m)", Th_wavelength
# Variables
E_imparted = (1.24*10**-6)/(0.2537*10**-6);
B_energy = E_imparted-4.30;
em_ratio = 0.176*10**12;
# Calculations
v = (2*B_energy*em_ratio)**0.5;
# Results
print "maximum velocity of emitted photo electrons (m/s)", v
import math
# Variables
Ri = 30;
Rf = 100;
t = 10.;
tc = 72.;
# Calculations
Rt = Ri+(Rf-Ri)*(1-math.exp(-t/tc));
# Results
print "resistance of the cell (K ohm)", Rt
import math
# Calculations and Results
I_power = 250*0.2*10**-6;
print "incident power (W)", I_power
Rl = 10.*10**3;
C = 2.*10**-12;
fc = 1./(2*math.pi*Rl*C);
print "cut off frequency (Hz)", fc
import math
# Variables
I = 2.2*10**-3;
Eo = 0.33;
Rl = 100.;
# Calculations and Results
Ri = (Eo/I)-100;
print "internal resistance of cell (ohm)", Ri
Vo = 0.33*(math.log(25)/math.log(10));
print "open circuit voltage for a radiant incidence of 25 W/m2 (V) = ", Vo
import math
# Variables
A = 1935*10**-6;
r = 0.914;
S_angle = A/r**2;
I = 180.;
# Calculations
L_flux = I*S_angle;
# Results
print "lumnious flux = ", L_flux
print "Corresponding to lumnious flux o.417 lm and a load resistance of 800 ohm the current is 120 micro Ampere",