import math
#Variable declaration
d = 2.5 #Core diameter(cm)
t = 1.25 #Insulation thickness(cm)
rho = 4.5*10**14 #Resistivity of insulation(ohm-cm)
l = 10.0**5 #Length(cm)
#Calculation
D = d+2*t #Overall diameter(cm)
R_i = rho/(2*math.pi*l)*math.log(D/d) #Insulation resistance(ohm)
#Result
print('Insulation resistance per km, R_i = %.2e ohm' %R_i)
print('\nNOTE: ERROR: Mistake in final answer in textbook')
import math
import cmath
#Variable declaration
R = 495.0*10**6 #Insulation resistance(ohm/km)
d = 3.0 #Core diameter(cm)
rho = 4.5*10**14 #Resistivity of insulation(ohm-cm)
#Calculation
l = 1000.0 #Length of cable(m)
r_2 = d/2.0 #Core radius(cm)
Rho = rho/100.0 #Resistivity of insulation(ohm-m)
r1_r2 = cmath.exp((2*math.pi*l*R)/Rho) #r1/r2
r_1 = 2*r_2 #Cable radius(cm)
thick = r_1-r_2 #Insulation thickness(cm)
#Result
print('Insulation thickness = %.1f cm' %thick)
import math
#Variable declaration
V = 66.0*10**3 #Line Voltage(V)
l = 1.0 #Length of cable(km)
d = 15.0 #Core diameter(cm)
D = 60.0 #Sheath diameter(cm)
e_r = 3.6 #Relative permittivity
f = 50.0 #Frequency(Hz)
#Calculation
C = e_r/(18.0*math.log(D/d))*l #Capacitance(µF)
I_ch = V/3**0.5*2*math.pi*f*C*10**-6 #Charging current(A)
#Result
print('Capacitance, C = %.3f µF' %C)
print('Charging current = %.2f A' %I_ch)
#Variable declaration
V_l = 132.0 #Line Voltage(kV)
g_max = 60.0 #Maximum Line Voltage(kV)
#Calculation
V = V_l/3**0.5*2**0.5 #Phase Voltage(kV)
d = 2*V/g_max #Core diameter(cm)
D = 2.718*d #Overall diameter(cm)
#Result
print('Overall diameter of the insulation, D = %.3f cm' %D)
import math
#Variable declaration
V = 11.0*10**3 #Line Voltage(V)
dia_out = 8.0 #Outside diameter(cm)
#Calculation
D = dia_out/2.0 #Overall diameter(cm)
d = (D)/2.718 #Conductor diameter(cm)
r = d/2 #Conductor radius(cm)
g_m = 2*V/(d*math.log(D/d)*10) #Maximum value of electric field strength(kV/m)
#Result
print('Conductor radius, r = %.3f cm' %r)
print('Electric field strength that must be withstood, g_m = %.f kV/m' %g_m)
#Variable declaration
R_3 = 1.00 #Cable radius(cm)
R_1 = 2.5 #Cable radius(cm)
#Calculation
R_2 = (R_1*R_3)**0.5 #Location of intersheath(cm)
alpha = R_1/R_2 #α
ratio = 2.0/(1+alpha) #Ratio of maximum electric field strength with & without intersheath
#Result
print('Location of intersheath, R_2 = %.2f cm' %R_2)
print('Ratio of maximum electric field strength with & without intersheath = %.3f ' %ratio)
import math
#Variable declaration
V = 33.0 #Line Voltage(kV)
D_2 = 2.0 #Conductor diameter(cm)
D_1 = 3.0 #Sheath diameter(cm)
#Calculation
R_2 = D_2/2 #Conductor radius(cm)
R_1 = D_1/2 #Sheath radius(cm)
g_max = V/(R_2*math.log(R_1/R_2)) #RMS value of maximum stress in the insulation(kV/cm)
g_min = V/(R_1*math.log(R_1/R_2)) #RMS value of minimum stress in the insulation(kV/cm)
#Result
print('Maximum stress in the insulation, g_max = %.2f kV/cm (rms)' %g_max)
print('Minimum stress in the insulation, g_min = %.2f kV/cm (rms)' %g_min)
import math
#Variable declaration
d = 2.5 #Conductor diameter(cm)
D = 6.0 #Sheath diameter(cm)
V_l = 66.0 #Line Voltage(kV)
#Calculation
alpha = (D/d)**(1.0/3) #α
d_1 = d*alpha #Best position of first intersheath(cm)
d_2 = d_1*alpha #Best position of second intersheath(cm)
V = V_l/3**0.5*2**0.5 #Peak voltage on core(kV)
V_2 = V/(1+(1/alpha)+(1/alpha**2)) #Peak voltage on second intersheath(kV)
V_1 = (1+(1/alpha))*V_2 #Voltage on first intersheath(kV)
stress_max = 2*V/(d*math.log(D/d)) #Maximum stress without intersheath(kV/cm)
stress_min = stress_max*d/D #Minimum stress without intersheath(kV/cm)
g_max = V*3/(1+alpha+alpha**2) #Maximum stress with intersheath(kV/cm)
#Result
print('Maximum stress without intersheath = %.2f kV/cm' %stress_max)
print('Best position of first intersheath, d_1 = %.2f cm' %d_1)
print('Best position of second intersheath, d_2 = %.3f cm' %d_2)
print('Maximum stress with intersheath = %.2f kV/cm' %g_max)
print('Voltage on the first intersheath, V_1 = %.2f kV' %V_1)
print('Voltage on the second intersheath, V_2 = %.2f kV' %V_2)
print('\nNOTE: Changes in the obtained answer is due to more precision here')
import math
#Variable declaration
e_1 = 3.6 #Inner relative permittivity
e_2 = 2.5 #Outer relative permittivity
d = 1.0 #Conductor diameter(cm)
d_1 = 3.0 #Sheath diameter(cm)
D = 5.0 #Overall diameter(cm)
V_l = 66.0 #Line Voltage(kV)
#Calculation
V = V_l/3**0.5*2**0.5 #Peak voltage on core(kV)
g1_max = 2*V/(d*(math.log(d_1/d)+e_1/e_2*math.log(D/d_1))) #Maximum stress in first dielectric(kV/km)
g2_max = 2*V/(d_1*(e_2/e_1*math.log(d_1/d)+math.log(D/d_1))) #Maximum stress in second dielectric(kV/km)
#Result
print('Maximum stress in first dielectric, g_1_max = %.2f kV/km' %g1_max)
print('Maximum stress in second dielectric, g_2_max = %.2f kV/km' %g2_max)
#Variable declaration
V = 85.0 #Line Voltage(kV)
g_max = 55.0 #Maximum stress(kV/cm)
#Calculation
V_1 = 0.632*V #Intersheath potential(kV)
d = 0.736*V/g_max #Core diameter(cm)
d_1 = 2*V/g_max #Intersheath diameter(cm)
D = 3.76*V/g_max #Overall diameter(cm)
d_un = 2*V/g_max #Core diameter of ungraded cable(cm)
D_un = 2.718*d_1 #Overall diameter of ungraded cable(cm)
#Result
print('Diameter of intersheath, d_1 = %.2f cm' %d_1)
print('Voltage of intersheath, V_1 = %.2f kV, to neutral' %V_1)
print('Conductor diameter of graded cable, d = %.2f cm' %d)
print('Outside diameter of graded cable, D = %.2f cm' %D)
print('Conductor diameter of ungraded cable, d = %.2f cm' %d_un)
print('Outside diameter of ungraded cable, D = %.2f cm' %D_un)
import math
#Variable declaration
c = 0.3 #Capacitance b/w any 2 conductor & sheath earthed(µF/km)
l = 10.0 #Length(km)
V = 33.0 #Line Voltage(kV)
f = 50.0 #Frequency(Hz)
#Calculation
C_eq = l*c #Capacitance b/w any 2 conductor & sheath earthed(µF)
C_p = 2.0*C_eq #Capacitance per phase(µF)
kVA = V**2*2*math.pi*f*C_p/1000.0 #Three-phase kVA required(kVA)
#Result
print('Equivalent star connected capacity, C_eq = %.f µF' %C_eq)
print('kVA required = %.1f kVA' %kVA)
import math
#Variable declaration
V = 11.0*10**3 #Line Voltage(V)
f = 50.0 #Frequency(Hz)
C_c = 3.7 #Measured capacitance(µF)
#Calculation
C_0 = 2*C_c #Capacitance(µF)
I_ch = 2*math.pi*f*C_0*V/3**0.5*10**-6 #Charging current per phase(A)
#Result
print('Charging current drawn by a cable = %.2f A' %I_ch)
import math
#Variable declaration
c_s = 0.90 #Capacitance b/w all conductors(µF)
C_0 = 0.4 #Capacitance b/w two conductor(µF)
V = 11.0*10**3 #Line Voltage(V)
f = 50.0 #Frequency(Hz)
#Calculation
C_s = c_s/3.0 #Capacitance measured(µF)
C_c = (C_0-C_s)/2.0 #Capacitance(µF)
C_a = 3.0/2*(C_c+(1/3.0)*C_s) #Capacitance b/w any two conductors(µF)
C_b = 2.0*C_c+(2.0/3)*C_s #Capacitance b/w any two bounded conductors and the third conductor(µF)
C_o = 3.0*C_c+C_s #Capacitance to neutral(µF)
I_c = 2.0*math.pi*f*C_o*V/3**0.5*10**-6 #Charging current(A)
#Result
print('Case(a): Capacitance between any two conductors = %.3f µF' %C_a)
print('Case(b): Capacitance between any two bounded conductors and the third conductor = %.1f µF' %C_b)
print('Case(c): Capacitance to neutral, C_0 = %.2f µF' %C_o)
print(' Charging current taken by cable, I_c = %.3f A' %I_c)
print('\nNOTE: ERROR: Calculation mistakes in textbook answer')
import math
#Variable declaration
V = 13.2*10**3 #Line Voltage(V)
f = 50.0 #Frequency(Hz)
C_BC = 4.2 #Capacitance b/w two cores(µF)
#Calculation
C_n = 2.0*C_BC #Capacitance to neutral(µF)
V_ph = V/3**0.5 #Operating phase voltage(V)
I_c = 2.0*math.pi*f*C_n*V/3**0.5*10**-6 #Charging current(A)
#Result
print('Charging current drawn by cable, I_c = %.2f A' %I_c)
import math
#Variable declaration
V = 33.0*10**3 #Line Voltage(V)
f = 50.0 #Frequency(Hz)
l = 4.0 #Length(km)
d = 2.5 #Diameter of conductor(cm)
t = 0.5 #Radial thickness of insulation(cm)
e_r = 3.0 #Relative permittivity of the dielectric
PF = 0.02 #Power factor of unloaded cable
#Calculation
#Case(a)
r = d/2.0 #Radius of conductor(cm)
R = r+t #External radius(cm)
e_0 = 8.85*10**-12 #Permittivity
C = 2.0*math.pi*e_0*e_r/math.log(R/r)*l*1000 #Capacitance of cable/phase(F)
#Case(b)
V_ph = V/3**0.5 #Phase voltage(V)
I_c = V_ph*2.0*math.pi*f*C #Charging current/phase(A)
#Case(c)
kVAR = 3.0*V_ph*I_c #Total charging kVAR
#Case(d)
phi = math.acos(PF)*180/math.pi #Φ(°)
delta = 90.0-phi #δ(°)
P_c = V_ph*I_c*math.sin(delta*math.pi/180)/1000 #Dielectric loss/phase(kW)
#Case(e)
E_max = V_ph/(r*math.log(R/r)*1000) #RMS value of Maximum stress in cable(kV/cm)
#Result
print('Case(a): Capacitance of the cable, C = %.3e F/phase' %C)
print('Case(b): Charging current = %.2f A/phase' %I_c)
print('Case(c): Total charging kVAR = %.4e kVAR' %kVAR)
print('Case(d): Dielectric loss/phase, P_c = %.2f kW' %P_c)
print('Case(e): Maximum stress in the cable, E_max = %.1f kV/cm (rms)' %E_max)