#initialisation of variables
lambda1 = 11000.0 #in Å
lambda1 = lambda1 * 10**-10
h = 6.625*10**-34
c = 3*10**8
q = 1.6*10**-19 #in C
#CALCULATIONS
E_g = h*c/lambda1 #in J
E_g= E_g/q #in eV
#RESULTS
print('The energy gap in Si is = %.2f eV' %E_g)
#Note: The answer in the book is not correct
import math
#initialisation of variables
E_g = 0.75 #in eV
q=1.6*10**-19 #in C
E_g = E_g*q #in J
h = 6.63*10**-34 #in J
c = 3*10**8 #in m/s
#CALCULATIONS
lembda = (h*c)/E_g #in m
lembda = lembda * 10**10 #in Å
#RESULTS
print('The wavelength is =%.f Å ' %lembda)
import math
from numpy import *
#initialisation of variables
del_E = 0.3 #value of E_C-E_F in eV
T1 = 330.0 #in K
T = 300 #in K
#CALCULATIONS
del_E1 = del_E*(T1/T) #value of E_C-E_F in eV
#RESULTS
print('The position of fermi level is =%.2f eV' %del_E1)
print('Hence the Fermi level will be %.2f eV below the conduction band' %del_E1)
import math
#initialisation of variables
K = 8.63*10**-5
T = 300.0 #in K
N_C = 2.8*10**19 #in cm^-3
del_E = 0.25
#CALCULATIONS
f_F = math.exp( (-del_E)/(K*T) )
n_o = N_C*math.exp( (-del_E)/(K*T) ) #in cm^-3
#RESULTS
print('The probability is =%.6f ' %f_F)
print('The thermal equillibrium electron concentration is =%.2f X 10^15 cm^-3' %(n_o/(10**15)))
print('Approximation error ')
# The answer is same as in book only thy have rounded off to 1.8 * 10^15 which is same as above
import math
#initialisation of variables
N_V = 1.04*10**19 #in cm^-3
T1 = 400.0 #in K
T2 = 300.0 #in K
del_E = 0.27 #value of E_F-E_V in eV
K = 0.0259
#CALCULATIONS
N_V= N_V*(T1/T2)**(3/2) #in cm^-3
KT = K*(T1/T2) #in eV
p_o = N_V*math.exp( (-del_E)/(KT) ) #in /cm^3
#RESULTS
print('The hole concentration is =%.2f x 10^15 per cm^3' %(p_o/(10**15)))
print('Approximationa error ')
import math
#initialisation of variables
N = 6.02*10**23
A = 63.5 #atomic weight
Rho = 1.7*10**-6 #in ohm cm
d = 8.96 # in gm/cc
#CALCULATIONS
n = (N/A)*d #in /cc
e = 1.6*10**-19 #in C
Miu_e = 1/(Rho*n*e) #in cm^2/volt-sec
#RESULTS
print('The mobility of electron is =%.2f cm^2/volt.sec' %Miu_e)
import math
from sympy.mpmath import *
import cmath
#initialisation of variables
d = 8.96 #in gm/cc
At = 63.5 #atomic weight
N_A = 6.02*10**23 #in /gm mole
l = 0.1 #in m
e = 1.6*10**-19 #in C
A = 1.7*10**-6 #in m^2
R = 0.1 #in ohm
#CALCULATIONS
n = (N_A/At)*d #in /cc
n = n * 10**6 #in /m^3
Rho = (R*A)/l #in ohm.m
Sigma = 1/Rho #in mho/m
Miu_e = Sigma/(n*e) #in m^2/V-sec
#RESULTS
print('The electron mobility is =%.3f X 10^-3 m^2/V-sec ' %(Miu_e*(10**3)))
import math
#initialisation of variables
N_A = 6.025*10**23 #in /gm mole
d = 10.5 #in gm/cc
At = 108.0 #atomic weight of
#CALCULATIONS
n = (N_A/At)*d #in /cm^3
n = n * 10**6 #in /m^3
r = 10**-3 #in m
A = math.pi * ((r)**2) #in m^2
q = 1.6*10**-19
I = 2 #in A
V = I/(n*q*A) #in m/s
#RESULTS
print('The drift velocity of an electron is =%.f X 10^-4 m/s' %(V*(10**5)))
print('Approximationa error ')
# answer is same as in book only they have rounded of 0.000068 to 7 * 10^-4
import math
#initialisation of variables
e= 1.6*10**-19 #in C
d= 1.03 #in mm
d= d*10**-3 #in m
R= 6.51 #in ohm
l= 300.0 #in m
n= 8.4*10**28 #per m^3
#CALCULATIONS
r= d/2 #in m (radius)
A= math.pi*r**2 #in m^2
rho= R*A/l #in ohm meter
sigma= 1/rho #in mho/m
miu_e= sigma/(n*e) #m^2/V-sec
#RESULTS
print('The coductivity of copper is =%.2f mho/m' %sigma)
print('The mobility of charge carriers is : =%.6f m^2/V-sec' %miu_e)
import math
#initialisation of variables
Miu_e = 1500.0 #in cm^2/volt.sec
Miu_h = 500.0 #in cm^2/volt.sec
n_i = 1.6*10**10 #in /cm^3
e = 1.6*10**-19 #in C
#CALCULATIONS
Sigma_i = n_i*(Miu_e+Miu_h)*e #in mho/cm
Sigma = Sigma_i #in mho/cm
#RESULTS
print('The conductivity of pure silicon is =%.7f mho/cm' %Sigma)
#initialisation of variables
Miu_e = 1500.0 #in cm^2/volt.sec
Miu_h = 500.0 #in cm^2/volt.sec
n_i = 1.6*10**10 #in /cm^3
e = 1.6*10**-19 #in C
#CALCULATIONS
Sigma_i = n_i*(Miu_e+Miu_h)*e #in mho/cm
Sigma = Sigma_i #in mho/cm
#RESULTS
print('The conductivity of pure silicon is =%.2f X 10^-6 mho/cm' %(Sigma*(10**6)))
#initialisation of variables
Miu_d = 500.0 #in cm^2/V.S
Rho = 10 #in ohm cm
#CALCULATIONS
e = 1.6*10**-19 #in C
n_d = 1/(Rho*e*Miu_d) #in /cm^3... correction
#RESULTS
print('The number of donor is =%.2f X 10^15 atom per cm^3' %(n_d/(10**15)))
#initialisation of variables
d = 5.32 #in gm/cc
N_A = 6.02*10**23 #in atoms/gm.mole
At = 72.6 #atomic weight
Miu = 3800 #in cm^2/v.s
#CALCULATIONS
n_d = (N_A/At) * d #in /cm^3
n_d = n_d * 10**-8 #in /cc
e = 1.6*10**-19 #in C
Sigma = n_d * Miu * e #in mho/cm
#RESULTS
print('The conductivity of specimen is =%.2f mho/cm' %Sigma)
#initialisation of variables
Rho = 0.3623*10**-3 #in ohm m
d = 4.42*10**28 #Ge density in atoms/m^3
#CALCULATIONS
Sigma = 1/Rho #in mho/m
n_d = d*10**-6 #in atoms/m^3
e = 1.6*10**-19 #in C
Miu = Sigma/(n_d*e) #in m^2/V.sec
#RESULTS
print('The electron mobility is =%.2f m^2/V-sec' %Miu)
#initialisation of variables
N_A = 6.025*10**26 #in /kg.Mole
At = 72.59 #atomic weight
d = 5.36*10**3 #in kg/m^3
R = 0.42 #in ohm m
B_i = 10**-6 #rate of boron impurity in %
e = 1.6*10**-19 #in C
#CALCULATIONS
n = (N_A/At)*d #number of Ge atoms
h = n/10**8 #holes per unit volume
Miu_h = 1/(R*h*e) #in m^2/V.sec
#RESULTS
print('The Mobility of holes is =%.2f m^2/V-sec' %Miu_h)
#initialisation of variables
n_i = 2*10**19 #in /m^3
Miu_e = 0.36 #in m^2/v.s
Miu_h = 0.17 #in m^2/v.s
#CALCULATIONS
A = 1*10**-4 #in m^2
V = 2 #in Volts
l = 0.3 #in mm
l = l * 10**-3 #in m
e = 1.6*10**-19 #in C
Sigma_i = n_i * e * (Miu_e+Miu_h) #in mho/m
I = (Sigma_i * V*A)/l #in amp
#RESULTS
print('The current in amp is =%.2f ' %I)
#initialisation of variables
d = 4.2*10**28 #in atoms/m^3
n_d = d/10**6 #in atoms/m^3
e = 1.6*10**-19 #in C
Miu_e = 0.36 #in m^2/V-sec
#CALCULATIONS
Sigma_n = n_d *e *Miu_e #in mho/m
Rho_n = 1/Sigma_n #ohm m
#RESULTS
print('The resistivity in Ωm is =%.2f X 10^-3' %(Rho_n*(10**3)))
#initialisation of variables
n_i = 1*10**19 #in /m^3
Miu_e = 0.36 #in m^2/volt.sec
Miu_h = 0.17 #in m^2/volt.sec
A = 2 #in cm^2
A = A * 10**-4 #in m^2
t = 0.1 #in mm
t = t*10**-3 #in m
V = 4 #in volts
e = 1.6*10**-19 #in C
#CALCULATIONS
Sigma_i = n_i * e * (Miu_e + Miu_h) #mho/m
J = Sigma_i * (V/t) #in Amp/m^2
I = J*A #in Amp
#RESULTS
print('The current in Amp is =%.2f ' %I)
#initialisation of variables
Miu_h = 500.0 #in cm^2/V.s
Miu_e = 1500.0 #in cm^2/V.s
n_i = 1.6*10**10 #in /cm^3
e = 1.6*10**-19 #in C
#CALCULATIONS
Sigma_i = n_i * e * (Miu_e+Miu_h) #in mho/cm
#RESULTS
print('The conductivity of pure silicon in mho/cm is =%.2f X 10^-6 ' %(Sigma_i*(10**6)))
#initialisation of variables
Si_density = 10.5 #in gm/cc
N_A = 6.025*10**23
At = 108.0 #atomic weight
B = 0.8 #in Tesla
w = 0.50 #in cm
w = w * 10**-2 #in m
t = 0.10 #in mm
t = t * 10**-3 #in m
A = w*t #in m^2
q = 1.6*10**-19 #in C
I = 2 #in ampere
#CALCULATIONS
n = (N_A/At) * Si_density #in /cc
n = n * 10**6 #in /m^3
V_H = (B*I*t)/(n*q*A) #in volts
#RESULTS
print('The hall voltage produced is =%.3f X 10^-7 volts' %(V_H*(10**7)))
#initialisation of variables
Sigma = 5.8*10**7 #in mho/m
l = 1 #in m
d = 1 #in cm
d = d * 10**-2 #in m
W = 1 #in mm
W = W*10**-3 #in m
I = 1 #in Amp
B = 1 #in Tesla
V_H = 0.074*10**-6 #in Volts
A = 10**-2 * 10**-3 #in m^2
#CALCULATIONS
R_H = (V_H*A)/(B*I*d) #in m^3/c
Miu = Sigma * R_H #in m^2/volt.sec
#RESULTS
print('Hall coefficient is =%.1f X 10^-11 m^3/c' %(R_H*(10**11)))
print('The mobility of electron is = %.2f X 10^-3 m^2/volt.sec ' %(Miu*(10**3)))
#initialisation of variables
n_i = 1.4*10**18 #in /m^3
n_D = 1.4*10**24 #in /m^3
n = n_D #in /m^3
#CALCULATIONS
p = n_i**2/n #in /m^3
R_e = n/p #Ratio of electron
#RESULTS
print('Concentration of is =%.2f X 10^12 holes per m^3 ' %(p/(10**12)))
print('Ratio of electron to hole concentration is =%.f 10^12 ' %(R_e/(10**12)))
#initialisation of variables
B = 0.48 #in Wb/m^2
R_H = 3.6 * 10**-4 #in m^3/c
R = 9*10**-3 #in ohm-m
#CALCULATIONS
Sigma = 1/R #in (ohm-m)^-1
Rho = 1/R_H #in coulomb/m^3
e = 1.6*10**-19 #in C
n = Rho/e #in /m^3
Miu = Sigma * R_H #in m^2/volt-s
#RESULTS
print('The mobility of electron is =%.2f m^2/volt-s' %Miu)
#initialisation of variables
e = 1.6*10**-19 #in C
R_H = 0.0145 #in m^3/coulomb
Miu_e = 0.36 #m^2/v-s
E = 100 #V/m
#CALCULATIONS
n = 1/(e*R_H) #in /m^3
J= n*e*Miu_e*E #in A/m^2
#RESULTS
print('The current density is =%.2f A/m^2 ' %J)
import math
#initialisation of variables
e = 1.6*10**-19 #in C
Miu_e = 7.04*10**-3 #in m^2/volt-sec
n = 5.8*10**28 #number of electron/m^3
m = 9.1*10**-31
E_F = 5.5 # in eV
#CALCULATIONS
Torque = (Miu_e/e)*m # in sec
Rho = 1/(n*e*Miu_e) #in ohm cm
V_F = math.sqrt( (2*E_F*e)/m ) #in m/s
#RESULTS
print('Relaxtion time is =%.2f X 10^-15 sec ' %(Torque*(10**15)))
print('Resistivity of conductor is =%.2f X 10^-18 in Ωm' %(Rho*(10**8)))
print('Velocity of electron with the fermi energy is =%.2f X 10^-6 in m/s' %(V_F/(10**6)))
# Note: The calculation of Part (ii) is wrong also the unit of resistivity of conductor is wrong
import math
#initialisation of variables
E= 5.95 #in eV
EF= 6.25 #in eV
delE= 0.01
#CALCULATIONS
#delE= 1-1/(1+exp((E-EF)/KT))
K=1.38*10**-23 #Boltzman Constant in J/K
T = ((E-EF)/math.log(1/(1-delE) -1)*1.6*10**-19)/K #in K
#RESULTS
print('The temperature is =%.2f K' %T)
import math
#initialisation of variables
T1 = 400.0 #in K
T2 = 300.0 #in K
N_V = 1.04*10**19 #in cm^-3
#CALCULATIONS
N1 = N_V*((T1/T2)**(3/2)) #in cm^-3
KT = 0.0259*(T1/T2) #in eV
FermiLevel= 0.27 #in eV
P_O = N1*math.exp( (-FermiLevel)/KT ) #in cm^-3
#RESULTS
print('The thermal equillibrium hole concentration is =%.2f X 10^15 cm^-3' %(P_O/(10**15)))
print('Approximationa error ')
# Answer in the book is wrong
import math
#initialisation of variables
T1 = 550.0 #in K
T2 = 300.0 #in K
N1 = 1.04*10**19
#CALCULATIONS
N_V = N1*((T1/T2)**(3))
N_C = 2.8*10**19
E_g = -1.12
KT = 0.0259*(T1/T2)
n_i = math.sqrt(N_C*N_V*math.exp(E_g/KT)) #in cm^-3
Nd= math.sqrt(n_i**2/((1.05-1/2.0)**2-(1/2.0)**2))
#RESULTS
print('The value of n_i is =%.2f X 10^14 cm^-3' %(n_i/(10**14)))
print('The value of N_d is =%.2f X 10^15 cm^-3' %(Nd/(10**15)))
#Formula n_o= Nd/2+sqrt((Nd/2)^2+n_i^2) and n_o = 1.05*N_d;
import math
#initialisation of variables
n_o = 10**15 #in cm^-3
n_i = 10**10 #in cm^-3
p_o = 10**5 #in cm^-3
del_p = 10**13 #in cm^-3
#CALCULATIONS
del_n = del_p #in cm^-3
KT= 0.0259 #in eV
Fermi_level1= KT*math.log(n_o/n_i) #in eV
Fermi_level2= KT*math.log((n_o+del_n)/n_i) #in eV
Fermi_level3= KT*math.log((p_o+del_p)/n_i) #in eV
#RESULTS
print('Fermi level for thermal equillibrium is : =%.2f eV ' %Fermi_level1)
print('Quasi-Fermi level for electrons in non equillibrium is : =%.2f eV' %Fermi_level2)
print('Quasi-Fermi level for holes in non equillibrium is: =%.2f eV' %Fermi_level3)