#initialisation of variables
n_o = 10**17 #in/cm^3
n_i = 1.5*10**10 #in /cm^3
#CALCULATIONS
p_o = ((n_i)**(2))/n_o #in holes/cm^3
#RESULTS
print('The hole concentration is =%.f in holes/cm^3' %p_o)
import math
#initialisation of variables
n_i = 1.5 * 10**10 #in /cm^3 for silicon
N_d = 10**17 #in atoms/cm^3
n_o = 10**17 #electrons/cm^3
KT = 0.0259
#CALCULATIONS
# E_r - E_i = KT * log(n_o/n_i)
del_E = KT * math.log(n_o/n_i) #in eV
#RESULTS
print('The energy band for this type material is Ei =%.2f eV' %del_E)
import math
#initialisation of variables
K = 1.38*10**-23 #in J/K
T = 27 #in degree C
T = T + 273 #in K
e = 1.6*10**-19
Miu = 0.17 #in m^2/v-s
Miu1 = 0.025 #in m^2/v-s
#CALCULATIONS
D_n = ((K*T)/e)*Miu #in m^2/s
D_p = ((K*T)/e)*Miu1 #in m^2/s
#RESULTS
print('The diffusion coefficient of electrons is =%.2f X 10^-4 in m^2/s ' %(D_n*(10**4)))
print('The diffusion coefficient of holes is =%.2f X 10^-4 in m^2/s ' %(D_p*(10**4)))
import math
#initialisation of variables
Miu_n = 0.15 #in m^2/v-s
K = 1.38*10**-23
T = 300 #in K
e = 1.6*10**-19 #in C
#CALCULATIONS
D_n = Miu_n*((K*T)/e) #in m^2/s
Torque_n = 10**-7 #in s
L_n = math.sqrt(D_n*Torque_n) #in m
del_n = 10**20 #electrons/m^3
J_n = (e*D_n*del_n)/L_n #in A/m^2
#RESULTS
print('The diffusion length is =%.2f X 10^-4 in m' %(L_n*(10**5)))
print('The diffusion current density is =%.2f X 10^3 in A/m^2 ' %(J_n/(10**3)))
import math
#initialisation of variables
Sigma_n = 0.1 #in (ohm-cm)^-1
Miu_n = 1300
q = 1.6*10**-19 #in C
#CALCULATIONS
n_n = Sigma_n/(Miu_n*q) #in electrons/cm^3
n_i = 1.5*10**10
p_n = ((n_i)**2)/n_n #in holes/cm^3
p_n = p_n * 10**6 #in holes/m^3
n_n=n_n*10**6
#RESULTS
print('Concentration of electrons is =%.2f X 10^20 per m^3 ' %(n_n/(10**20)))
print('Concentration of holes is =%.2f X 10^11 per m^3 ' %(p_n/(10**11)))
import math
#initialisation of variables
L = 100*10**-6 #in m
Miu_e = 0.13 #in m^2/V-s
Torque_h = 10**-6 #in s
Miu_h = 0.05 #in m^2/v-s
V = 12 #in V
#CALCULATIONS
Torque_n = ((L)**2)/(Miu_e*V) #in s
P = (Torque_h/Torque_n)*(1+(Miu_h/Miu_e))
#RESULTS
print('Electron transit time is =%.2f X 10^-9 in sec' %(Torque_n*(10**9)))
print('Photoconductor gain is =%.2f ' %P)
import math
#initialisation of variables
q = 1.6*10**-19 #in C
n_i = 2.5*10**13
Miu_n = 3800 #in cm^2/V-s
Miu_p = 1800 #in cm^2/V-s
#CALCULATIONS
Sigma = n_i*(Miu_n + Miu_p)*q #in (ohm-cm)^-1
Rho = 1/Sigma #in ohm-cm
N_D =4.4*10**22/10**8 #in atoms/cm^3
Sigma_n = N_D * Miu_n*q #in (ohm-cm)^-1
Rho1 = 1/Sigma_n #in ohm cm
#RESULTS
print('The resistivity is =%.2f in ohm-cm ' %Rho)
print('The resistivity drops is =%.2f in ohm cm ' %Rho1)
import math
#initialisation of variables
n_i = 10**16 #in /m^3
N_D = 10**22 #in /m^3
#CALCULATIONS
n = N_D #in /m^3
p = ((n_i)**2)/n #in /m^3
#RESULTS
print('The concentration of is =%.2f X 10^21 electrons per m^3' %(n/(10**21)))
print('The concentration of is =%.2f X 10^9 holes per m^3 ' %(p/(10**9)))
import math
#initialisation of variables
Rho = 9.6*10**-2 #ohm-m
Sigma_n = 1/Rho #in (ohm-m)^-1
Miu_n = 1300 #in cm^2/V-s
#CALCULATIONS
Miu_n = Miu_n * 10**-4 #in m^2/V-s
q = 1.6*10**-19 #in C
N_D = Sigma_n/(Miu_n*q) #in atoms/m^3
d = 5*10**22 #in atoms/cm^3
d = d * 10**6 #// in atoms/m^3
R_d = N_D/d #Ratio
#RESULTS
print('Ratio of donor atom to silicon atoms per unit volume is =%.2f X 10^-8 ' %(R_d*(10**8)))
import math
#initialisation of variables
n_i = 1.5*10**10 #in /cm^3
n_n = 2.25*10**15 #in /cm^3
#CALCULATIONS
p_n = ((n_i)**2)/n_n #in /cm^3
#RESULTS
print('The concentration of is =%.2f X 10^5 holes per cm^3 ' %(p_n/(10**5)))
print('Donor impurity per cm^3 is =%.2f X 10^15 ' %(n_n/(10**15)))
#initialisation of variables
N_A = 2*10**16 #in /cm^3
N_D = 10**16 #in /cm^3
#CALCULATIONS
C = N_A-N_D #in /cm^3
#RESULTS
print('Carrier concentration in holes/cm^3 is =%.2f X 10^16 ' %(C/(10**16)))
#initialisation of variables
del_n = 10**15 #in /cm^3
Torque_p = 10*10**-6 #in sec
#CALCULATIONS
R_G = del_n/Torque_p #in electron hole pairs/sec/cm^3
#RESULTS
print('The rate of generation of minority carrier is : =%.2f X 10^20 electron hole pairs/sec/cm^3 ' %(R_G/(10**20)))
#initialisation of variables
V = 1/20.0 #in cm/µsec
V=V*10**6 #in cm/sec
#CALCULATIONS
E = 10 #in V/cm
Miu = V/E #in cm^2/V-sec
#RESULTS
print('The mobility of minority charge carrier is =%.f cm^2/V-sec' %Miu)
import math
#initialisation of variables
q = 1.6 * 10**-19 #in C
N_D = 4.5 * 10**15 #in /cm^3
del_p = 10**21
e=10 #in cm
A = 1 #in mm^2
A = A * 10**-14 #cm^2
l = 10 #in cm
Torque_p = 1 #in microsec
#CALCULATIONS
Torque_p = Torque_p * 10**-6 #in sec
Torque_n = 1 #in microsec
Torque_n = Torque_n * 10**-6 #in sec
n_i = 1.5 * 10**10 #in /cm^3
D_n = 30 #cm^2/sec
D_p = 12 #in cm^2/sec
n_o = N_D #in /cm^3
p_o = ((n_i)**2)/n_o #in /cm^3
l_n = math.sqrt(D_n * Torque_n) #in cm
l_p = math.sqrt(D_p * Torque_p) #in cm
x=34.6*10*8-4 #in cm
e1 = 1.88 * 10**1 #in cm
dnBYdx = del_p * e1 #in cm^4
dpBYdx = del_p *e #in cm^4
J_P = -(q) * D_p * dpBYdx #in A/cm^2
J_n = q * D_n * dnBYdx #in A/cm^2
#RESULTS
print('Hole concentration at thermal equilibrium per cm^3 is =%.1f X 10^5 ' %(p_o/(10**5)))
print('Diffusion length of holes in cm is =%.1f X 10^-3 ' %(l_p*(10**3)))
print('Concentration gradient of holes at distance in cm^4 is =%.f X 10^22 ' %(dpBYdx/(10**22)))
print('Concentration gradient of electrons in per cm^4 is =%.1f X 10^22 ' %(dnBYdx/(10**22)))
print('Current density of holes due to diffusion in A/cm^2 is =%.2f X 10^4 ' %(J_P/(10**4)))
print('Current density of electrons due to diffusion in A/cm^2 is =%.2f X 10^4 ' %(J_n/(10**4)))
#initialisation of variables
h = 6.626 * 10**-34 #in J-s
q= 1.6*10**-19 #in C
#CALCULATIONS
h= h/q #in eV
c = 3*10**8
lembda = 5490*10**-10 #in m
E = h*c/lembda #in eV
#RESULTS
print('The energy band gap is =%.2f eV ' %E)
#initialisation of variables
D_n = 35 #in cm^2/sec
q = 1.6*10**-19 #in C
y2 = 6*10**16 #in /cm^3
y1 = 10**17 #in /cm^3
x2 = 2*10**-4
x1 = 0
#CALCULATIONS
dnBYdx = (y2-y1)/(x2-x1)
J_n = q*D_n*dnBYdx #in A/cm^2
#RESULTS
print('The current density is =%.f in A/cm^2' %J_n)
#initialisation of variables
q = 1.6*10**-19 #in C
n_n = 5*10**20 #in /m^3
n_n = n_n * 10**-6 #in /cm^3
Miu_n = 0.13 #in m^2/V-sec
#CALCULATIONS
Miu_n = Miu_n * 10**4 #in cm^2/V-sec
Sigma_n = q*n_n*Miu_n #in ohm-cm^-1
Rho = 1/Sigma_n
A = 100 # in µm^2
A = A * 10**-8 #in cm^2
l = 0.1 #in cm
R = Rho * (l/A) #in ohm
R=R*10**-6
#RESULTS
print('The resistance of the bar is =%.2f in M ohm' %R)
#initialisation of variables
w = 3.0 #in µm
#CALCULATIONS
D = w/9 #in µm
#RESULTS
print('Depletion width on P side is =%.2f in µm ' %D)
#initialisation of variables
n_i = 1.5*10**16 #in /m^3
n_n = 5*10**20 #in /m^3
#CALCULATIONS
p_n = ((n_i)**2)/n_n #in /m^3
#RESULTS
print('The minority carrier density per m^3 is =%.2f X 10^11' %(p_n/(10**11)))
#initialisation of variables
y2 = 10**14 #in /cm^3
y1 = 0
x1=-0.5 #in µm
#CALCULATIONS
x1= x1*10**-4 #in cm
x2=0
dnBYdx = (y2-y1)/(x2-x1) #in /cm^4
q = 1.6*10**-19 #in C
D_n = 25 #in cm^2/sec
J_n = q*D_n*dnBYdx #in A/cm^2
#RESULTS
print('The collector current density is =%.f in A/cm^2' %J_n)
#initialisation of variables
h = 6.64*10**-34 ##in J-s
q=1.6*10**-19 #in C
#CALCULATIONS
h= h/q #in eV
c = 3*10**8 #in m/s
lembda = 0.87*10**-6 #in m
E_g = (h*c)/lembda #in eV
#RESULTS
print('The band gap in eV is =%.2f ' %E_g)
import math
#initialisation of variables
alpha = 5*10**4 #in cm^-1
l = 0.46*10**-4 #in cm
hv = 2 #in eV
I_o = 10**-2 #in W
#CALCULATIONS
I_t = I_o*math.exp(-alpha*l) #in W
A_p = I_o-I_t #absorbed power in W or J/s
c = 1.43
A_E = (hv-c)/hv*A_p # in J/s
e = 1.6*10**-19 #in C
P = A_p/(e*hv) #Perfect quantum efficiency in photon/s
#RESULTS
print('Total energy absorbed is =%.f X 10^-3 in J/s' %(A_p*(10**3)))
print('Rate of excess thermal energy is =%.2f X 10^-3 in J/s' %(A_E*(10**3)))
print('Perfect quantum efficiency is =%.2f X 10^16 in photon/s' %(P/(10**16)))
import math
#initialisation of variables
Mu_p = 500 #in cm^2/v-s
kT = 0.0259
Toh_p = 10**-10 #in sec
p_o = 10**17 #in cm^-3
q= 1.6*10**-19 # in C
A=0.5 #in square meter
del_p = 5 * 10**16 #in cm^-3
n_i= 1.5*10**10 #in cm^-3
#CALCULATIONS
D_p = kT * Mu_p #in cm/s
L_p = math.sqrt(D_p * Toh_p) # in cm
x = 10**-5 #in cm
p = p_o+del_p*e**(x/L_p) #in cm^-3
Eip= math.log(p/n_i)*kT #in eV
Ecp= 1.1/2-Eip #value of E_c-E_p in eV
Ip= q*A*D_p/L_p*del_p*e**(x/L_p) #in A
Qp= q*A*del_p*L_p #in C
#RESULTS
print('The hole current is : =%.2f X 10^3 in A ' %(Ip*(10**3)))
print('Approximation error')
print('The value of Qp is :=%.2f X 10^-7 in C' %(Qp*(10**7)))
#Note: There is a calculation error to evalaute the value of hole current hence the value of hole current in the book is wrong