Chpater No 7: Optoelectonic Devices

Example 7.1, Page No 283

In [1]:
import math 

#initialisation of variables
Vout = 5.0         #in V
V = 1.5               #ON state voltage drop across LED in V
I = 5.0          #in mA

#CALCULATIONS
I = I*10**-3       #in A
R = (Vout-V)/I         #in ohm

#RESULTS
print('Resistance  is =%.f Ω' %R)
Resistance  is =700 Ω

Example 7.2, Page No 306

In [2]:
import math

#initialisation of variables
N_A = 7.5*10**24            #in atoms/m^3
N_D = 1.5*10**22            #in atoms/m^3
D_e = 25*10**-4             #in m^2/s
D_n = 1*10**-3             #in m^2/s
V_T = 26*10**-3            #in V

#CALCULATIONS
Torque_eo = 500*10**-9            #in sec
Torque_ho = 100*10**-9            #in sec
e = 1.6*10**-19                #in C
n_i = 1.5*10**16              #in /m^3
I_lambda = 12.5              #in mA/cm^2
I_lambda= I_lambda*10**-3       #in A/cm^2
L_e = math.sqrt(D_e*Torque_eo)    #in m
L_n = math.sqrt(D_n*Torque_ho)  #in m
J_s = e*((n_i)**2)*( ((D_e)/(L_e*N_A)) + ((D_n)/(L_n*N_D)) )         #in A/m^2
J_s= J_s*10**-4                      #in A/cm^2
V_OC = V_T*(math.log(1+(I_lambda/J_s)))                     #in V

#RESULTS
print('Open circuit voltage is =%.2f volts ' %V_OC)
Open circuit voltage is =0.52 volts 

Example 7.3, Page No 307

In [3]:
import math

#initialisation of variables
Phi_o = 1.0*10**21               #in m^-2s^-1
alpha =1.0*10**5                 #in m^-1
e= 1.6*10**-19                 #in C

#CALCULATIONS
G_L1 = alpha*Phi_o             #in m^-3s^-1
W = 26.0                       #in µm
W = W * 10**-6                 #in m
G_L2 = alpha*Phi_o*(math.e)**((-alpha)*W)             #in m^-3s^-1
#temp=(1-math.e)**(-(alpha)*W)
J_L = e*Phi_o*(1-math.e**(-(alpha)*W))               #in A/m^2
J_L = J_L * 10**3*10**-4                         #in mA/cm^2

#RESULTS
print('Photo current density  is =%.1f mA/cm^2' %J_L)
Photo current density  is =14.8 mA/cm^2