# Constant
c = 3 * 10 ** 10 # Velocity of light, cm/sec
# Variable
wavelength = 3500 * 10 ** -8 # Wavelength of radiation, cm
# Solution
print "v = c / wavelength"
print "v: Velocity, c: Speed of light"
v = c / wavelength
print "The frequency of radiation is", '{:.2e}'.format(v), "Heartz."
# Constant
c = 3 * 10 ** 8 # speed of light, m/sec
# Variable
f = 5 * 10 ** 16 # frequency, cycles/sec
# Solution
v_bar = f / c
print "The wave number is", '{:.2e}'.format(v_bar), "cycles/m."
# Constant
c = 3 * 10 ** 8 # Speed of light, m/sec
# Variable
T = 2.4 * 10 ** -10 # Time period, sec
# Solution
f = 1 / T # Frequency, /sec
lamda = c / f # wavelength, m
v_bar = 1 / lamda # wavenumber, /meter
print "Frequency:", '{:.2e}'.format(f), "/sec"
print "Wavelength:", '{:.2e}'.format(lamda), "m"
print "Wave number:", '{:.2e}'.format(v_bar), "/m"
import math
# Constants
c = 3 * 10 ** 8 # Speed of light, m/sec
m = 9.1 * 10 ** -31 # Mass of electron, kg
h = 6.626 * 10 ** -34 # Plank's constant, J.sec
# Variable
ke = 4.55 * 10 ** -25 # Kinetic Energy, J
# Solution
v = math.sqrt(ke * 2 / m)
lamda = h / (m * v)
print "The de Broglie wavelength is", '{:.2e}'.format(lamda), "m"
# Constant
h = 6.626 * 10 ** -34 # Plank's constant, J.sec
# Variables
m = 10 * 10 ** -3 # Mass of the ball, kg
v = 10 ** 5 # Velocity of ball, cm / sec
# Solution
lamda = (h * 10 ** 7) / (m * v)
print "The Wavelength of iron ball is", "{:.2}".format(lamda), "cm"
# Constant
h = 6.626 * 10 ** -34 # Plank's constant, J.sec
# Variable
lamda = 2 * 10 ** -10 # wavelength, m
# Solution
p = h / lamda
print "The momentum of the particle is", "{:.2}".format(p), "kg.m/s"
# Constants
m = 9.1 * 10 ** -31 # Mass of electron, kg
h = 6.626 * 10 ** -34 # Plank's constant, J.sec
pi = 3.141 # Pi
# Variable
delta_x = 1 * 10 ** -10 # uncertainty in velocity, m
# Solution
delta_v = h / (4 * pi * m * delta_x)
print "Uncertainty in position of electron >=",
print "{:.2}".format(delta_v), "m/s"
# Constants
h = 6.626 * 10 ** -34 # Plank's constant, J.sec
pi = 3.141 # Pi
# Variables
m = 10 ** -11 # Mass of particle, g
v = 10 ** -4 # Velocity of particle, cm/sec
delta_v = 0.1 / 100 # Uncertainty in velocity
# Solution
delta_v = v / 1000
delta_x = (h * 10 ** 7) / (4 * pi * delta_v * m)
print "Uncertainty in position >=",
print "{:.3e}".format(delta_x), "cm"
# Constants
c = 3 * 10 ** 8 # Speed of light, m/sec
h = 6.626 * 10 ** -34 # Plank's constant, J.sec
# Variable
lamda = 650 * 10 ** -12 # Wavelength of radiation, m
# Solution
E = h * c / lamda
print "Energy per photon", "{:.3e}".format(E), "J"
# Constant
h = 6.625 * 10 ** -34 # Plank's constant, J.sec
# Variables
v = 6.5 * 10 ** 7 # Velocity of particle, m/s
lamda = 5 * 10 ** -11 # Wavelength, m
# Solution
P = h / lamda
print "The momentum of the particle", "{:.2e}".format(P), "kg.m/s"
import math
# Constants
c = 3 * 10 ** 8 # Speed of light, m/sec
m = 9.1 * 10 ** -31 # Mass of electron, kg
h = 6.626 * 10 ** -34 # Plank's constant, J.sec
# Variables
lamda = 200 * 10 ** -7 # Wavelength, cm
wf = 6.95 * 10 ** -12 # Work function, erg
# Solution
E = (h * c) * 10 ** 9 / lamda
print "Energy of photon", "{:.3e}".format(E), "erg"
ke = E - wf
v = math.sqrt((2 * ke) / (m * 10 ** 3)) * 10 ** -2
print "The maximum velocity of electron", "{:.3e}".format(v), "m/sec"
# Constant
h = 6.626 * 10 ** -34 # Plank's constant, J.sec
# Variables
m = 150 # Weight of ball, gm
v = 50 # Velocity, m/sec
lamda = h / (m * v * 10 ** -8)
print "Wavelength of ball", "{:.3e}".format(lamda), "m"
print "Its wavelength is so short that it does not fall",
print "in visible range, so we cannot observe it."
# Constant
h = 6.626 * 10 ** -34 # Plank's constant, J.sec
pi = 3.141 # Pi
# Variables
m = 0.1 # Mass of base ball, kg
delta_x = 10 ** -10 # Uncertainty in position, m
# Solution
delta_v = h / (4 * pi * m * delta_x)
print "Uncertainty in velocity >=", "{:.2e}".format(delta_v), "m/s"
# Constant
t_v = 1.3 * 10 ** 15 # Threashold freq. Pt, /sec
h = 6.626 * 10 ** -34 # Plank's constant, J.sec
# Solution
print "The threshold frequency is the lowest frequency",
print "that photons may possess to produce the photoelectric",
print "effect."
E = h * t_v
print "The energy corresponding to this frequency is the minimum",
print "energy =", "{:.2e}".format(E), "erg"
# Constants
m = 9.1 * 10 ** -31 # Mass of electron, kg
h = 6.626 * 10 ** -34 # Plank's constant, J.sec
e = 1.602 * 10 ** -19 # Charge of electron, C
# Variable
v = 1.87 * 10 ** 9 # Velocity of electron, m/sec
# Solution
V = m * v ** 2 / (2 * e)
lamda = h / (m * v)
print "The voltage is", "{:.2e}".format(V), "volt"
print "The de Broglie wavelength is", "{:.2e}".format(lamda), "m"
# Constants
m = 9.1 * 10 ** -31 # Mass of electron, kg
h = 6.626 * 10 ** -34 # Plank's constant, J.sec
# Variable
lamda = 4.8 * 10 ** -9 # Wavelength of electron, m
# Solution
ke = ((h / lamda) ** 2) / (2 * m)
print "The Kinetic Energy of moving electron is", "{:.2e}".format(ke),
print "J"
# Constants
m = 9.1 * 10 ** -31 # Mass of electron, kg
h = 6.626 * 10 ** -34 # Plank's constant, J.sec
c = 3 * 10 ** 8 # Speed of light, m/sec
# Variables
v = 6.46 * 10 ** 5 # Velocity of electron, m/sec
lamda = 200 * 10 ** -9 # Wavelength of light, m
# Solution
E = (h * c) / lamda
ke = m * v ** 2
w = E - ke
print "The workfunction of the metal surface is", "{:.3e}".format(w),
print "J"
import math
# Constants
e = 1.602 * 10 ** -19 # Charge of proton, C
m_p = 1.66 * 10 ** -27 # Mass of proton, kg
m_e = 9.1 * 10 ** -31 # Mass of electron, kg
h = 6.626 * 10 ** -34 # Plank's constant, J.sec
# Variable
V = 35 # Acceleration potential, volt
# Solution
lamda_p = h / math.sqrt(2 * e * V * m_p)
lamda_e = h / math.sqrt(2 * e * V * m_e)
print "The wavelength of electron when accelerated with same",
print "potential is", "{:.3e}".format(lamda_e), "m"
B_O1 = (10 - 6) / 2 # Bond Order for O2
B_O2 = (10 - 7) / 2 # Bond Order for O2-
print "Bond length of O2- > O2 as Bond order of O2",
print "> Bond order of O2- :", B_O1 > B_O2
print "Both are paramagnetic, because they contain unpaired electrons."
B_O = (9 - 4) / 2.0 # Bond order of N2+
print "MO configuration of N2+ is"
print "σ(1s2)σ*(1s2)σ(2s2)σ*(2s2) [π(2px2) = π(2py2)] σ(2pz1)\n"
print "The Bond order of N2+, 1/2[Nb - Na] =", B_O
# Solution
v_n = 2 * 5 # number of valence e- in nitrogen
v_co = 4 + 6 # number of valence e- in CO
print "The number of valence electrons in N2", v_n
print "The number of valence electrons in CO", v_co
print "O2(+2) [B.O. = 1.0] < O2(-1) [B.O. = 1.5] <",
print "O2 [B.O. = 2.0] < O2(+1) [B.O. =2.5]"
print "The number of electrons in N2-", (7 + 8)
print "The molecular configuration of N2- is"
print "σ(1s2)σ*(1s2)σ(2s2)σ*(2s2) [π(2px2) = π(2py2)]",
print "σ(2pz2) [π*(2px1) = π*(2py0)] OR [π*(2px0) = π*(2py1)]"