# Constants
m_br79 = 78.9183 # Mass of 79Br, amu
m_br81 = 80.9163 # Mass of 91Br, amu
Na = 6.022 * 10 ** 23 # Mole constant, /mol
pi = 3.141 # Pi
c = 3 * 10 ** 10 # Speed of light, cm /s
# Variable
wave_no = 323.2 # Wave no. of fund. vibration of 79Br - 81Br, /cm
# Solution
mu = (m_br79 * m_br81) / ((m_br79 + m_br81) * Na)
k = 4 * (pi * c * wave_no) ** 2 * mu * 10 ** -3
print "The force constant of the bond is", "{:.3e}".format(k), "N/m"
# Constants
Na = 6.022 * 10 ** 23 # Mole constant, /mol
pi = 3.141 # Pi
c = 3 * 10 ** 10 # Speed of light, cm /s
h = 6.626 * 10 ** -34 # Plank's constant, J.sec
# Variables
b_l = 112.81 * 10 ** -12 # Equillibrium bond length, m
m1 = 12 # Mass of Carbon, g /mol
m2 = 16 # Mass of Oxygen, g /mol
# Solution
mu = m1 * m2 / ((m1 + m2) * Na) # g
mu *= 10 ** -3 # kg
B = h / (8 * pi ** 2 * mu * b_l ** 2 * c)
v2_3 = B * 6
print "The reduced mass of CO is", "{:.3e}".format(mu), "kg"
print "The frequency of 3->2 transition is", "{:.2f}".format(v2_3), "/cm"
# Constants
Na = 6.022 * 10 ** 23 # Mole constant, /mol
# Variables
d_NaCl = 2.36 * 10 ** -10 # Intermolecular dist. NaCl, m
m_Cl = 35 * 10 ** -3 # Atomic mass, kg /mol
m_Na = 23 * 10 ** -3 # Atomic mass, kg /mol
# Solution
mu = m_Na * m_Cl / ((m_Na + m_Cl) * 10 ** -3 * Na) * 10 ** -3
I = mu * d_NaCl ** 2
print "The reduced mass of NaCl is", "{:.3e}".format(mu), "kg"
print "The moment of inertia of NaCl is", "{:.3e}".format(I), "kg.m^2"
import math
# Constant
e = 4000 # Extinction coeff., dm^3/mol/cm
# Variable
x = 3 # Solution thickness, cm
# Solution
A = math.log10(1 / 0.3) # Absorbance
C = A / (e * x)
print "The concentration of the solution is", "{:.2e}".format(C), "mol/dm^3"
# Constants
pi = 3.141 # Pi
c = 3 * 10 ** 10 # Speed of light, cm /s
# Variables
v_bar = 2140 # Fundamental vibrating freq, /cm
m_C = 19.9 * 10 ** -27 # Atomic mass of C, kg
m_O = 26.6 * 10 ** -27 # Atomic mass of O, kg
# Solution
mu = m_O * m_C / (m_C + m_O)
k = 4 * (pi * c * v_bar) ** 2 * mu
print "The force constant of the molecule is", "{:.3e}".format(k), "N/m"
print "a) Microwave < IR < UV-Visible < X-Ray."
print "b) HCl and NO because they possess permanent dipole moments, so they are rotationally active."
import math
# Constants
pi = 3.141 # pi
c = 3 * 10 ** 10 # speed of light, cm /s
h = 6.626 * 10 ** -34 # Plank's constant, J.sec
Na = 6.022 * 10 ** 23 # Mole constant, /mol
# Variables
d = 20.7 # Interspacing, /cm
m1 = 1 # Mass of H, g / mol
m2 = 35.5 # Masso f Cl, g / mol
# Solution
B = 0.1035 * 10 ** 2 # /m
I = h / (8 * pi ** 2 * B * c)
mu = m1 * m2 / ((m1 + m2) * Na)
mu *= 10 ** -3
r = math.sqrt(I / mu)
print "The intermolecular distance of HCl is", "{:.3e}".format(r), "m"
# Discrepency in value is due to error in calculation in the textbook
import math
# Constant
e = 8000 # Molar absorbtion coeff, dm^3 / mol / cm
# Variable
l = 2.5 # Thickness of solution, cm
# Solution
C = math.log10(1 / 0.3) / (e * l)
print "The concentration of Solution from Lambert-Beer's Law is",
print "{:.2e}".format(C), "mol/dm^3"
print "a) In the visible-UV spectra, CH2 = CHOCHOCH3 exhibits"
print "a higher value of lambda(max) because it has two conjugated"
print "chromophores, that is, one double bond (C=C) and a carbonyl"
print "group."
print
print "b) Because of the symmetrical vibrations of C=C double bond and"
print "triple bond, ethylene and acetylene do not absorb IR energy."
print "Because CO2 is a linear molecule."
v_deg = 3 * 3 - 5
print "The vibrational degree of freedom is", v_deg