# Solution
print "Weiss indices \t\t\t1/2, 2/3, infinity \t2/3, 2, 1/3"
print "Reciprocal of Weiss indices 2, 3/2, 1/infinity \t3/2, 1/2, 3"
print "Clear fractions\t\t\t4, 3, 0 \t3, 1, 6"
print "Miller indices \t\t\t (430) \t (316)"
from math import sqrt
# Variable
a = 450 # pm
# Solution
d220 = a / sqrt(2 ** 2 + 2 ** 2 + 0)
print "Interplanar spacing", int(d220)
# Solution
print "Intercept \t(a, b ,c)\t\t(a, 2b, c) \t\t(a, 2b, 2c) \t\t(infi, b, -c)"
print "Weiss indices\t 1, 1, 1 \t\t 1, 2, 1 \t\t 1, 2, 2 \t\t infi, 1, -1"
print "Reciprocals \t 1, 1, 1 \t\t 1, 1/2, 1 \t\t 1, 1/2, 1/2\t\t 0, 1, -1"
print "Miller indicec\t (111) \t\t (212) \t\t (211) \t\t (011)"
# Variables
rNa = 0.98 * 10 ** - 10 # m
rCl = 1.81 * 10 ** - 10 # m
# Solution
rr = rNa / rCl
print "When the radius ration is", "{:.2f}".format(rr),
print ", the coordination number is 6."
# Variables
rLi = 68 # pm
rF = 136. # pm
# Solution
rr = rLi / rF
print "Radius ratio =", rr
print "The structure of LiF is scc and C.N of Li+ = 6"
from math import sin
# Variables
lamda = 2 * 10 ** - 10 # m
theta = 30 # degrees
# Solution
print "For first-order reflection"
d = lamda / (2 * sin(theta))
dist = 2 * d
print "Hence, distance between planes is", "{:.0e}".format(abs(dist)), "m"
from math import sqrt
# Variables
r = 174.6 # pm
# Solution
a = r * sqrt(8)
print "For 200 plane: h = 2, k = 0, l = 0"
d200 = a / sqrt(2 ** 2)
print "d200 =", "{:.1f}".format(d200), "pm"
print "For 200 plane: h = 2, k = 2, l = 0"
d220 = a / sqrt(2 ** 2 + 2 ** 2)
print "d220 =", d220, "pm"
# Constant
N = 6.023 * 10 ** 23
# Variables
wt = 55.6
p = 0.29 # nm
n = 2
# Solution
print "For BCC pattern,"
print "number of atoms per unit cell = 2"
d = n * (wt * 10 ** -3) / (N * (p * 10 ** - 9) ** 3)
print "Density of the metal is", "{:.2e}".format(d), "kg / m^3"
print "Number of nearest enighbour for BCC = 8"
# Solution
print "Intercept \t2a/2, 2b, c/3"
print "Weiss indices\t1, 2, 1/3"
print "Reciprocals \t1, 1/2, 3"
print "Miller indices\t (216)"
# Constant
N = 6.023 * 10 ** 23
# Variables
D = 0.53 # g / cm ^ 3
MM = 6.94 # g / mol
n = 2
# Solution
print "For BCC pattern,"
print "number of atoms per unit cell = 2"
V = D * N / (n * MM)
V = 1 / V
print "Volume of a unit cell of lithium metal is", "{:.2e}".format(V), "cc"
from math import sqrt
print "AB remain in BCC structure if the edge length is a then body diagonal",
print "is root(3)a"
print "root(3)a = 2(r+ + r-)"
A = (sqrt(3) * 0.4123 - 2 * 0.81) / 2
print "A+ =", "{:.2f}".format(A), "nm"