Chapter3 - Operational amplifiers and their parameters

Ex 3.1 - page : 76

In [2]:
fBW=4 #MHz
fo=10 #Hz
AOL=fBW*10**6/fo #unitless
print "Open loop gain is %0.e" %AOL
Open loop gain is 4e+05

Ex 3.2 - page : 78

In [4]:
V1=-10 #V
V2=10 #V
SR=0.5 #V/micro second
delta_Vo=V2-V1 #V
delta_t=delta_Vo/SR #micro second
print "Time taken by op-amp is %0.f micro sec" %delta_t
Time taken by op-amp is 40 micro sec

Ex 3.3 - page : 78

In [5]:
import math
SR=0.6 #V/micro second
f=100 #kHz
Vm=(SR/10**-6)/(2*math.pi*f*1000) #V
print "Maximum voltage, Vm is %0.3f V" %Vm
Maximum voltage, Vm is 0.955 V

Ex 3.4 - page : 79

In [6]:
import math
SR=0.5 #V/micro second
Vm=10 #V
f=100 #kHz
fm=(SR/10**-6)/(2*math.pi*Vm) #Hz
fm/=1000  #kHz
print "Maximum frequency, fm is %0.2f kHz " %fm
Maximum frequency, fm is 7.96 kHz 

Ex 3.5 - page : 79

In [8]:
delta_t=0.3/2 #micro second
V1=-3 #V
V2=3 #V
delta_Vo=V2-V1 #V
SR=delta_Vo/delta_t #V/micro second
print "Slew rate is %0.f V/micro second " %SR
Slew rate is 40 V/micro second 

Ex 3.6 - page: 80

In [9]:
SR=2 #V/micro second
delta_Vin=0.8 #V
delta_t=10 #micro second
Acl_max=SR/(delta_Vin/delta_t) #unitless
print "Maximum close loop voltage gain is",Acl_max
Maximum close loop voltage gain is 25.0

Ex 3.7 - page : 80

In [12]:
import math
SR=6 #V/micro second
#Part (i)
Vm=1 #V
fm=(SR/10**-6)/(2*math.pi*Vm) #Hz
fm/=1000 #kHz
print "part (i) Maximum frequency, fm is %0.f kHz " %fm
#Part (ii)
Vm=10 #V
fm=(SR/10**-6)/(2*math.pi*Vm) #Hz
fm/=1000 #kHz
print "part (ii) Maximum frequency, fm is %0.1f kHz " %fm
part (i) Maximum frequency, fm is 955 kHz 
part (ii) Maximum frequency, fm is 95.5 kHz