In [2]:

```
#Assuming lamda = 50
lamda=50
#Given radius = lamda/25
radius=lamda/25
def rad_res(radius,turns,lamda):
S=pi*radius**2
res=31171*turns**2*S**2/lamda**4
print 'Radiation resistance for %d turns is: %f Ohms'%(turns,res)
rad_res(radius,1,lamda)
rad_res(radius,8,lamda)
```

In [5]:

```
#Given data is radius of loop and wire, frequency, conductivity
lamda=50.0
a=lamda/25
b=lamda*10**-4
f=100*10**6
space=4*10**-4*lamda
cond=5.7*10**7
omega=2*pi*f
mu_0=4*pi*10**-7
rad_res1=0.788
rad_res50=50.43
Rl=(a/b)*sqrt(omega*mu_0/(2*cond))
ecd1=rad_res1/(rad_res1+Rl)
print "Radiation efficiency of a single turn loop antenna is : %f"%(ecd1*100)
N=8
Rp_R0=0.38
R_ohmic=(N*a/b)*sqrt(omega*mu_0/(2*cond))*(1+Rp_R0)
ecd2=rad_res50/(rad_res50+R_ohmic)
print "Radiation efficiency of an 8 turn loop antenna is : %f"%(ecd2*100)
```

In [4]:

```
lamda=50
#Radius
a=lamda/25
S=pi*a**2
print 'Physical area of loop:',S
#Effective aperture
Aem=(3*lamda**2)/(8*pi)
comp=Aem/S
print 'Electrically the loop is',comp,'times bigger than physical area,'
```

In [7]:

```
#To design a resonant loop antenna omega=12 & circumference=1.125*lamda
omega=12
f=100*10**6
v=3*10**8
lamda=v/f
circum=1.125*lamda
a=circum/(2*pi)
print "The radius of the loop is: %f m"%(a)
b=(2*pi*a)/(exp(omega/2.0))
print "The radius of the wire is : %f m"%b
print "The axial directivity is calculated as 3.6 dB."
print "There is no need of a lumped element to resonate the radiator, since the antenna is self-resonant."
```