fc_E=2.5 #MHz(critical frequency of E-layer)
fc_F=8.4 #MHz(critical frequency of F-layer)
print "For E-layer : "
Nm=(fc_E*10**6)**2/81 #per m**3(Maximum electron density)
print "Maximum electron density = %0.4e per m**3 "%Nm
print "For F-layer : "
Nm=(fc_F*10**6)**2/81 #per m**3(Maximum electron density)
print "Maximum electron density = %0.4e per m**3 "%Nm
from math import sqrt
Nm_D=400 #electron/cm**3(Maximum electron density)
Nm_E=5*10**5 #electron/cm**3(Maximum electron density)
Nm_F=2*10**6 #electron/cm**3(Maximum electron density)
fc_D=9*sqrt(Nm_D) #kHz(critical frequency of D-layer)
print "Critical frequency for D-layer = %.2f kHz "%fc_D
fc_E=9*sqrt(Nm_E) #kHz(critical frequency of E-layer)
print "Critical frequency for E-layer = %0.3f MHz "%(fc_E/1000)
fc_F=9*sqrt(Nm_F) #kHz(critical frequency of F-layer)
print "Critical frequency for F-layer = %0.1f MHz "%(fc_F/1000)
from math import sqrt
Eta=0.5 #(refractive index)
N=400 #electron/cm**3(Electron density)
f=sqrt(81*N/(1-Eta**2)) #kHz(frequency)
print "Frequency = %0.2f kHz " %f
T=5 #milli-seconds(time period)
c=3*10**8 #m/s#/speed of light
H=1.0/2*c*T*10**-3 #m(Virtual height)
print "Virtual height = %0.2e km " %(H/1000)
from math import sqrt
d=2000 #km
H=200 #km
fc=6 #MHz
f_MUF=fc*sqrt(1+(d/2/H)**2) #MHz
print "MUF = %0.3f MHz " %f_MUF
from math import sqrt
Eta=0.9 #refractive index
f_MUF=10 #MHz
H=400 #km
Nm=(1-Eta**2)*(f_MUF*10**6)**2/81 #per m**3
fc=9*sqrt(Nm) #Hz
Dskip=2*H*sqrt((f_MUF*10**6/fc)**2-1) #km
print "Skip distance or range = %0.2f km " %Dskip