from math import pi
#given data :
E=10.0 #in V/m
ETA_o=120.0*pi #Constant
H=E/ETA_o #in A/m
print "The Magnetic Field Strength = %0.4f A/m " %H
from math import sqrt
#given data :
W=25.0 #in KW
W=W*10**3 #in W
r=3 #in Km
r=r*10**3 #in m
Erms=sqrt(90*W)/r #in V/m
print "Field strength at receiver = %0.2f V/m " %Erms
from math import pi
#given data :
le=125 #in m
Irms=5 #in A
lamda=1.25 #in Km
lamda=lamda*10**3 #in m
Rl=10 #in Ohm
#radiation Resistance
Rr=(80*pi**2)*(le/lamda)**2 #in Ohm
Rr=round(Rr) #in Ohm : approx
print "Radiation resistance = %0.2f Ohm " %Rr
#Power radiated
W=(Irms**2)*Rr #in
print "Power radiated = %0.2f W " %W
#Antenna efficiency
ETA=Rr/(Rr+Rl)
print "Antenna efficiency = %0.2f %% " %(ETA*100)
from math import cos, pi, sin
#given data :
r=1 #in Km
r=r*10**3 #in m
I=0.5 #in A
#For theta = 45 degree
theta=45 #in degree
E=(60*I/r)*((cos(pi*cos(theta*pi/180)/2))/sin(theta*pi/180))
print "E-Field for 45 degree angle = %0.2f mV/m " %(E*10**3)
ETA_o=120*pi #constant
H=E/ETA_o #in A/m
print "H-Field for 45 degree angle = %0.5f mV/m " %(H*10**3)
#For theta = 90 degree
theta=90 #in degree
E=(60*I/r)*((cos(pi*cos(theta*pi/180)/2))/sin(theta*pi/180))
print "E-Field for 90 degree angle = %0.2f mV/m " %(E*10**3)
ETA_o=120*pi #constant
H=E/ETA_o #in A/m
print "H-Field for 90 degree angle = %0.4f mV/m " %(H*10**3)
from math import pi
#given data :
#l=lambda/10 meter
#Assume pi**2 = 10
Rl=2.0 #in Ohm
#Rr=80*pi**2*(dl/lambda)**2
Rr=80*10*(1.0/10)**2 #in Ohm
print "Radiation Resistance = %0.2f Ohm" %(Rr)
ETA=Rr/(Rr+Rl) #in Ohm
print "Efficiency = %0.2f %%" %(ETA*100)
#given data :
#l=lambda/15 meter
#Assume pi**2 = 10
Rl=2.0 #in Ohm
#Gain :
Gain=5.33/4 #Unitless
#Directivity
Rr=80*10*(1.0/15)**2 #in Ohm
ETA=Rr/(Rr+Rl) #Unitless
Directivity=Gain/ETA #unitless
#Beam solid angle
BSA=4.0*pi/Directivity #in steradian
print "Directivity = %0.4f " %Directivity
print "Gain = %0.2f "%Gain
#Effective aperture
print "Effective aperture = " ,
print round((Gain/(4*pi)),3),"lambda**2"
print "Beam Solid Angle = %0.2f steradian "%BSA
Rr=80*10*(1.0/15)**2 #in Ohm
print "Radiation Resistance = %0.2f Ohm " %Rr
print "Pt =",120*10/225,"I**2"
print "Pr = 4*I**2"
from math import pi
#given data :
D=30.0 #in m
k=0.55 #illumination efficiency
f=4.0 #in GHz
f=f*10**9 #in Hz
c=3*10**8 #speed of light in m/s
lamda=c/f #in Meter
r=D/2 #in m
A=pi*(r**2) #in m**2
G=(4*pi/lamda**2)*k*A #Unitless
print "Gain = %0.5e"%G
HPBW=70*lamda/D #in Degree
print "HPBW = %0.3f Degree " % HPBW
BWFN=2*70*lamda/D #in Degree
print "BWFN = %0.2f Degree " %BWFN
#given data :
Rl=20.0 #in Ohm
Rr=100.0 #in Ohm
Gp=25.0 #power gain
ETA=Rr/(Rr+Rl) #Unitless
D=Gp/ETA #unitless
print "Directivity = %0.2f" %D
#given data :
lamda=10 #in m
D=80 #unitless
Aem=D*lamda**2/(4*pi) #in m**2
print "Maximum effective aperture = %0.2f m^2" %Aem
from math import log10
#given data :
P1=30 #in KW
P1=P1*1000 #in W
P2=5000 #in W
Gdb=10*log10(P1/P2) #unitless
print "Front to back ratio, Gdb =",round(Gdb ,3)
#given data :
f=10 #in GHz
f=f*10**9 #in Hz
Gt=40 #in dB
Gr=40 #in dB
print "Gain = Gt = Gr =",Gt ,"dB"
from math import pi
#given data :
L=10 #in m
f=1.5 #in MHz
f=f*10**6 #in Hz
X=350 #in Ohm
Q=100 #Coil parameter
c=3*10**8 #speed of light in m/s
lamda=c/f #in Meter
l_eff=2*L/2 #in m
Re=2*X/Q #in Ohm
Rr=40*pi**2*(l_eff/lamda)**2 #in hm
Gd=(3/2)*(lamda**2/(4*pi)) #unitless
ETA=Rr/(Rr+Re) #Efficiency unitless
Gp=Gd*ETA ##unitless
print "Antenna Efficiency = %0.1f %%" %(ETA*100)
print "Power gain = %0.2f " %(Gp)
#Note : Answer of Gp is wrong in the book.
#given data :
delf=600.0 #in KHz
fr=50 #in MHz
Q=(fr*10**6)/(delf*10**3) #unitless
print "Quality Factor = %0.2f " %(Q)
from math import pi
#given data :
OmegaA=4.0*pi #For isotropic Antenna
D=4.0*pi/OmegaA #Directivity : Unitless
print "Directivity of Isotropic Antenna = %0.2f" %D
from sympy import symbols, N
lamda = symbols('lamda')
#given data :
D=500.0 #Directivity : Unitless
Aem = D*lamda**2/(4*pi)
print "Aem =",N(Aem,4)
#given data
Fn_dB=1.1 #in dB
Fn=10**(Fn_dB/10) #unitless
To=290 #in Kelvin
Te=To*(Fn-1) #in Kelvin
print "Effective Noise Temperature = %0.2f degree Kelvin " %Te
from math import pi, log10
#given data
D=6.0 #in meter
f=10.0 #in GHz
f=f*10**9 #in Hz
Aactual=pi*D**2/4 #in m**2
Ae=0.6*Aactual #in m**2
c=3*10**8 #speed of light in m/s
lamda=c/f #in Meter
G=4*pi*Ae/lamda**2 #Unitless
Gdb=10*log10(G) #gain in dB
BWFN=140*lamda/D #in degree
print "Gain = %0.1f " %G
print "Gain = %0.2f dB " %Gdb
print "Beamwidth = %0.2f degree " %BWFN
print "Capture Area = %0.2f m**2 " %Ae
#Note : Answer in the book is not accurate.
from math import pi
#given data
Gdb=44 #gain in dB
G=10**(Gdb/10) #gain unitless
OmegaB=4*pi/G #n steradian
THETA3db=sqrt(4*OmegaB/pi) #in Radian
print "Beamwidth THETA3db = %0.4f degree " %THETA3db
#Note : Answer in the book is not accurate.