import math
#Given Data:
n1=1.61 #Core index
n2=1.55 #Cladding index
#Calculations:
NA=math.sqrt(n1**2-n2**2) #Formula
print"Numerical Aperture of Fibre is = ",NA
import math
#Given Data:
n1=1.65 #Core index
n2=1.53 #Cladding index
#Calculations:
NA=math.sqrt(n1**2-n2**2) #Formula
print"Numerical Aperture of Fibre is =",NA
import math
#Given Data:
n1=1.48 #R.I. of Core
n2=1.39 #R.I. of Cladding
#Calculations:
NA=math.sqrt(n1**2-n2**2) #Formula to find NA
phi=math.asin(NA)*180/(3.1472) #Acceptance angle
print"Numerical Aperture of Fibre is =",NA
print"Acceptance angle of Fibre is =",phi,"degrees"
import math
#given data:
u1=3.6 #Refractive Index of the Substance at 850 nm
u2=3.4 #Refractive Index of the Substance at 1300 nm
Vv=3*10**8 #Velocity of light in free space
#Calculations:
# i)Finding wavelength at 850 nm
Vs1=Vv/u1 #Velocity of light in substance at 850 nm
print"Velocity of light in substance at 850 nm =" ,Vs1,"m/sec"
lam1=850*10**-9/u1 #Wavelength of light in substance at 850nm
print" Wavelength of light in substance at 850nm =",lam1,"m"
#ii)Finding wavelength at 1300 nm
Vs2=Vv/u2 #Velocity of light in substance at 1300 nm
print"Velocity of light in substance at 1300 nm =",Vs2," m/sec"
lam2=1300*10**-9/u2 #Wavelength of light in substance at 1300nm
print"Wavelength of light in substance at 1300nm =" ,lam2,"m "
import math
#Given Data:
u1=1.5 #R.I. of Core
u2=1.45 #R.I.of Cladding
delta= (u1-u2)/u1 #Fractional Refractive index
#Calculations:
NA=u1*sqrt(2*delta) #Formula to find NA
theta0=math.asin(NA)*180/(3.1472) #Acceptance angle
thetac=math.asin(u2/u1)*180/(3.1472) #Critical angle
print"Numerical Aperture of Fibre is =",NA
print"Acceptance angle of Fibre is =",theta0,"degrees"
print" Critical angle of Fibre is =",thetac,"degrees"
import math
#Given Data:
NA=0.22 # Numerical Aperture of Fibre
delta=0.012 #Fractional index
#Calculations:
#Delta=(u1-u2)/u1
u1=NA/math.sqrt(2*delta) #Formula
u2=u1-(u1*delta) #Formula
print"Refractive Index of core of fibre is =",u1
print"Refractive Index of cladding of fibre is =",u2
import math
#Given Data:
u1=1.466 #R.I. of Core
u2=1.46 #R.I.of Cladding
V=2.4 #Cut off parameter
lamda=0.8*10**-6 #wavelength in meter
#Calculations:
NA=math.sqrt(u1**2-u2**2) #Formula to find Numerical Aperture
print"Numerical Aperture of Fibre is =",NA
#(printing mistake in book)printed answer is 1.13 but correct answer is 0.13
print"(printing mistake in book)"
# V = 2*3.142*a*NA / lamda
a=V*lamda/(2*3.142*NA) #core radius
print"Core radius of Fibre is (a) =",a,"m"
#w/a= 1.1
w=1.1*a #Spot size
print"Spot size of Fibre is =",w,"m"
theta=2*lamda*180/3.142/(3.142*w) #Divergence angle
print"Divergence angle of Fibre is =",theta,"degrees"
w10=lamda*10/(3.142*w) #Spot size at 10 m
print"Spot size at 10 m of Fibre is =",w10,"m"
import math
#Given Data:
w=98 #Spot size in meter
d=50*10**-6 #Core diameter in meter
a=d/2 #core radius
u1=1.47 #R.I. of Core
u2=1.45 #R.I.of Cladding
lamda=0.85*10**-6 #Wavlength in meter
NA=math.sqrt(u1**2-u2**2) #Formula to find NA
#Calculations:
V=2*3.142*a*NA/lamda #cut off parameter
N=(V**2)/2 #Number of modes
print"Cut off parameter of Fibre is =",V
print"Number of modes of Fibre is =",N
import math
#Given Data:
u1=1.47 #R.I. of Core
u2=1.46 #R.I.of Cladding
lamda=1.3*10**-6 #wavelength in meter
#Calculations:
NA=math.sqrt(u1**2-u2**2) #Formula to find Numerical Aperture
#The condition for single mode is V<2.405
#2*3.142*a*NA/lamda < 2.405
a=2.405*lamda/(2*3.142*NA) #Maximum radius of fibre
print"Maximum radius of Fibre is =",a,"meter"
import math
#Given Data:
u1=1.465 #R.I. of Core
u2=1.46 #R.I.of Cladding
lamda=1.25*10**-6 #operating wavelength
#Calculations:
delta=(u1-u2)/u1 #Fractional Refractive index
print"Fractional Refractive index of Fibre is =",delta
#For single mode propagation codition is
# a/lamda < 1.4/(3.142*sqrt(u1(u1-u2)))
a=lamda*1.4/(3.142*u1*math.sqrt(delta)) #core radius
u=u1-(math.sqrt(2*delta)/(2*3.142*(a/lamda))) #effective refractive index
print"Effective Refractive index for lowest mode propagation is =",u
import math
#Given Data:
u1=1.54 #R.I. of Core
u2=1.5 #R.I.of Cladding
lamda=1.3*10**-6 #wavelength in meter
a=25*10**-6 #core radius in meter
#Calculations:
NA=math.sqrt(u1**2-u2**2) #Formula to find Numerical Aperture
V=2*3.142*a*NA/lamda #cut off parameter
print"Cut off parameter of Fibre is =",V
N=(V**2)/2 #Number of modes
print" Number of modes of Fibre is =",N
import math
#Given Data:
u1=1.52 #R.I. of Core
u2=1.5189 #R.I.of Cladding
lamda=1.3*10**-6 #wavelength in meter
d=29*10**-6 #core diameter in meter
a=d/2
#Calculations:
NA=math.sqrt(u1**2-u2**2) #Formula to find Numerical Aperture
V=2*3.142*a*NA/lamda #Normalised frequency
Nm=(V**2)/2 #Number of modes
print"Normalised frequency of Fibre is (V)=",V
print"The Maximum Number of modes the Fibre will support is (Nm) =",Nm
import math
#Given Data:
u1=1.5 #R.I. of Core
d=10*10**-6 #diameter of core
a=d/2 #core radius
lamda=1.3*10**-6 #wavelength
V=2.405 #cut off parameter for single mode
#Calculations:
#We know, V=2*3.142*a*NA/lamda
NA=V*lamda/(2*3.142*a) #Numerical Aperture
theta=math.asin(NA)*180/3.142 #Acceptance angle
print"Acceptance angle of Fibre is =",theta,"Degrees"
#Also, NA=u1*sqrt(2*delta)
delta=(NA/u1)**2/2 #Fractional index
print"Maximum Fractional Refractive index of Fibre is =",delta
#delta=(u1-u2)/u1
u2=u1*(1-delta) #R.I.of cladding
print"Refractive index of cladding of Fibre is =",u2
import math
#Given Data:
n1=1.5 #R.I. of core
delta=0.0005 #Fractional index difference
#Calculations:
#(a):
#Delta=(u1-u2)/u1
n2=n1-(n1*delta) #R.I. of cladding
print"(a)Refractive Index of cladding of fibre is =",n2
#(b):
phi=math.asin(n2/n1)*180/3.142 #Critical internal reflection angle
print"(b)Critical internal reflection angle of Fibre is =",phi,"degrees"
#(c):
theta0=math.asin(math.sqrt(n1**2-n2**2))*180/3.142 #External critical Acceptance angle
print"(c)External critical Acceptance angle of Fibre is =",theta0,"degrees"
#(d):
NA=n1*math.sqrt(2*delta) #Formula to find Numerical Aperture
print"(d)Numerical Aperture of Fibre is =",NA
import math
#Given Data:
NA1=0.20 #Numerical Aperture of Fibre
n2=1.59 #R.I. of cladding
#Calculations:
#NA=sqrt(n1**2-n2**2)
#In air, n0=1
n1=math.sqrt(NA1**2+n2**2) #R.I.of core
#Now, in water
n0=1.33
NA2=math.sqrt(n1**2-n2**2)/n0 #Numerical Aperture in water
theta0=math.asin(NA2)*180/3.142 #Acceptance angle of fibre in water
print"Acceptance angle of Fibre in water is =",theta0,"degrees"
import math
#Given Data:
n1=1.45 #R.I.of core
n2=1.40 #R.I. of cladding
#Calculations:
NA=math.sqrt(n1**2-n2**2) #Numerical Aperture
print"Numerical Aperture of Fibre is =",NA
theta0=math.asin(NA)*180/3.142 #Acceptance angle of fibre
print"Acceptance angle of Fibre is =",theta0,"degrees"
import math
#Given Data:
NA=0.16 #Numerical Aperture of Fibre
n1=1.45 #R.I. of core
d=90*10**-6 #Core diameter
#Calculations:
#NA=sqrt(n1**2-n2**2)
n2=math.sqrt(n1**2-NA**2) #R.I.of cladding
print"(a)Refractive Index of cladding of fibre is =",n2
theta0=math.asin(NA)*180/3.142 #Acceptance angle of fibre
print"(b)Acceptance angle of Fibre is =",theta0,"degrees"
import math
#Given Data:
n1=1.48 #R.I. of core
delta=0.055 #Realtive R.I.
lamda=1*10**-6 #Wavelength of light
a=50*10**-6 #core radius
#Calculations:
#Delta=(u1-u2)/u1
n2=n1-(n1*delta) #R.I. of cladding
NA=n1*math.sqrt(2*delta) #Formula to find Numerical Aperture
print"Numerical Aperture of Fibre is =",NA
theta0=math.asin(NA)*180/3.142 #Acceptance angle of fibre
print"Acceptance angle of Fibre is =",theta0,"degrees"
V=2*3.142*a*NA/lamda #V number
N=(V**2)/2 #Number of guided modes
#In book,instead of NA , value of delta is taken into calculation.
#Thus there is calculation mistake in values of V and N.
print"V number of Fibre is =",V
print"Number of guided mode of Fibre is =",N
print"(Calculation mistake in book)"