#Variable declaration
h = 6.63*10**-34 #Planck's constant(J-s)
m = 10**-2 #mass of object(kg)
v = 1 #velocity(m/s)
l = 1*10**-10 #wavelength(m)
d = 10**-3 #distance travelled(m)
#Calculations
lamda = h/(m*v)
v = h/(m*l)
t1 = d/v
t = t1/(365*24*60*60)
#Results
print "de Brogile wavelength =",round(lamda/1e-32,2),"*10^-32 m"
print "Velocity =",round(v/1e-22,2),"*10^-22 m/s(Calculation mistake in the textbook)"
print "Distance travelled =",round(t/1e+10,2),"*10^10 years(Calculation mistake in the textbook)"
#Variable declaration
h = 6.63*10**-34 #Planck's constant(J-s)
m = 9.1*10**-31 #mass of electron(kg)
lamda = 1*10**-10 #wavelength(m)
#calculation
v = h/(m*lamda)
#Result
print "Velocity =",round(v/1e+6,2),"*10^6 m/s"
#Variable declaration
h = 6.63*10**-34 #Planck's constant(J-s)
m = 9.1*10**-31 #mass of electron(kg)
lamda = 5000*10**-10 #wavelength(m)
#calculation
E = (h**2/(2*m*lamda**2))/(1.6*10**-19)
#Result
print "Kinetic energy =",round(E/1e-6,5),"*10^-6 eV"
import math
#Variable declaration
h = 6.63*10**-34 #Planck's constant(J-s)
m = 1.676*10**-27 #mass of object(kg)
E = 0.025*1.6*10**-19 #energy(J)
#Calculation
lamda = h/math.sqrt(2*m*E)
#Result
print "Wavelength =",round(lamda/1e-10,2),"A"
import math
#Variable declaration
h = 6.63*10**-34 #Planck's constant(J-s)
m = 9.1*10**-31 #mass of electron(kg)
E = 120*1.6*10**-19 #energy(J)
#Calculation
lamda = h/math.sqrt(2*m*E)
#Result
print "Wavelength =",round(lamda/1e-10,2),"A"
#Variable declaration
h = 6.63*10**-34 #Planck's constant(J-s)
m = 1.67*10**-27 #mass of neutron(kg)
lamda = 1*10**-10 #wavelength(m)
#calculation
v = h/(m*lamda)
E = (h**2/(2*m*lamda**2))/(1.6*10**-19)
#Result
print "Velocity =",round(v,2),"m/s"
print "Kinetic energy =",round(E/1e-2,3),"*10^-2 eV"
import math
#Variable declaration
h = 6.63*10**-34 #Planck's constant(J-s)
m = 1 #mass of object(kg)
v = 1 #velocity(m/s)
V = 182 #potential differnce(V)
#Calculation
#Case i
lamda = 12.27/math.sqrt(V)
#Case ii
l = h/(m*v)
#Results
print "de Brogile wavelength for accelerated electron=",round(lamda,2),"A"
print "de Brogile wavelength for object=",l,"A"
#Variable declaration
h = 6.63*10**-34 #Planck's constant(J-s)
m = 9.1*10**-31 #mass of electron(kg)
lamda = 10**-14 #wavelength(m)
#Calculations
p = h/lamda
E = (p**2/(2*m))/(1.6*10**-13)
#Results
print "Momentum =",p,"kg-m/s"
print "Energy =",round(E,2),"MeV"
#Variable declaration
h = 6.63*10**-34 #Planck's constant(J-s)
V = 3000 #potential differnce(V)
#Calculation
#Case i
lamda = 12.27/math.sqrt(V)
#Case ii
p = h/(lamda*10**-10)
#Case iii
lamda_b = 1/(lamda*10**-10)
#Case iv
d = 2.04*10**-10 #m
n = 1 #for first order
theta = math.degrees(math.asin((n*lamda*10**-10)/(2*d)))
#Results
print "Momentum =",round(p/1e-23,2),"*10^-23 kg-m/s"
print "de Brogile wavelength =",round(lamda,3),"A"
print "Wave number =",round(lamda_b/1e+10,3),"*10^10 /m"
print "Bragg angle =",round(theta,3),"degrees"
#Variable declaration
h = 6.63*10**-34 #Planck's constant(J-s)
V = 10*10**3 #potential differnce(V)
#Calculation
lamda = 12.27/math.sqrt(V)
p = h/(lamda*10**-10)
#result
print "Wavelength =",lamda,"A"
print "Momentum =",round(p/1e-23,3),"*10^-23 kg-m/s"
#Variable declaration
h = 6.63*10**-34 #Planck's constant(J-s)
m = 6.68*10**-27 #mass of particle(kg)
E = 1.6*10**-16 #energy(J)
#Calculations
lamda = h/math.sqrt(2*m*E)
v = h/(m*lamda)
#Results
print "Wavelength =",round(lamda/1e-13,3),"*10^-13 A"
print "Velocity =",round(v/1e+5,2),"*10^5 m/s"
#Variable declaration
h = 6.63*10**-34 #Planck's constant(J-s)
c = 3*10**8 #velocity of light(m/s)
m = 9.1*10**-31 #mass of electron(kg)
E = 1.6*10**-19 #energy(J)
#Calculations
lamda_ph = (h*c)/E #wavelength of photon
lamda_e = h/math.sqrt(2*m*E) #wavelength of electron
#Result
print "Wavelength of proton =",round(lamda_ph/1e-6,3),"*10^-6 m"
print "Wavelength of electron =",round(lamda_e/1e-10,3),"A"
#Variable declaration
h = 6.63*10**-34 #Planck's constant(J-s)
c = 3*10**8 #velocity of light(m/s)
m = 9.1*10**-31 #mass of electron(kg)
#Calculations
E = m*c**2
lamda = h/math.sqrt(2*m*E)
#Result
print "de Brogile wavelength =",round(lamda/1e-12,3),"*10^-12 m"
import math
#Variable declaration
h = 6.63*10**-34 #Planck's constant(J-s)
m = 9.1*10**-31 #mass of electron(kg)
del_v = (0.01*400)/100
#Calculation
del_x = h/(4*math.pi*m*del_v)
#Result
print "Accuracy =",round(del_x/1e-3,2),"mm"
import math
#Variable declaration
h = 6.63*10**-34 #Planck's constant(J-s)
m = 9.1*10**-31 #mass of electron(kg)
del_x = 10*10**-9 #m
E = 1.6*10**-16 #energy(J)
#Calculation
del_px = h/(4*math.pi*del_x)
p = math.sqrt(2*m*E)
per = (del_px/p)*100
#Result
print "Percentage of uncertainity =",round(per,4),"%"
import math
#Variable declaration
h = 6.63*10**-34 #Planck's constant(J-s)
m = 9.1*10**-31 #mass of electron(kg)
del_v = (0.01*4*10**5)/100
#Calculation
del_x = h/(4*math.pi*m*del_v)
#Result
print "Accuracy =",round(del_x/1e-6,2),"*10^-6 m"
import math
#Variable declaration
h = 6.63*10**-34 #Planck's constant(J-s)
m = 9.1*10**-31 #mass of electron(kg)
del_v = (1.88*10**6)/100
#Calculation
del_x = h/(4*math.pi*m*del_v)
#Result
print "Precision =",round(del_x/1e-9,3),"*10^-9 m"
import math
#Variable declaration
lamda = 4*10**-7 #wavelength(m)
c = 3*10**8 #velocity of light(m/s)
del_l = 8*10**-15 #spectral width(m)
#calculation
del_t = lamda**2/(4*math.pi*c*del_l)
#Result
print "Time spent by the elctrons =",round(del_t/1e-9,3),"*10^-9 s"
import math
#Variable declaration
h = 6.63*10**-34 #Planck's constant(J-s)
del_t = 1.4*10**-10 #time spent(s)
#calculation
E = (h/(4*math.pi*del_t))/(1.6*10**-19)
#Result
print "Uncertainity =",round(E/1e-6,2),"*10^-6 eV"
import math
#Variable declaration
lamda = 546*10**-9 #wavelength(m)
c = 3*10**8 #velocity of light(m/s)
del_l = 10**-14 #spectral width(m)
#calculation
del_t = lamda**2/(4*math.pi*c*del_l)
#Result
print "Time spent by the elctrons =",round(del_t/1e-9,2),"*10^-9 s"
#Variable declaration
h = 6.63*10**-34 #Planck's constant(J-s)
m = 9.1*10**-31 #mass of electron(kg)
L = 2*10**-10 #width(m)
#Calculation
E1 = (h**2/(8*m*L**2))/(1.6*10**-19)
E2 = 4*E1
E3 = 9*E1
#Result
print "Energy of electron in ground state =",round(E1,3),"eV"
print "Energy of electron in first state =",round(E2,3),"eV"
print "Energy of electron in second state =",round(E3,3),"eV"
#Variable declaration
L = 5.6*10**-3 #width(m)
#Calculation
E = L/4
#Result
print "Ground state energy =",E,"eV"
import scipy
from scipy import integrate
#Variable declaration
#Intervals
x1 = 0
x2 = 1./2
#Calculation
x = lambda x: 3*x**2
P = integrate.quad(x, x1, x2)
#Result
print "Probability =",P[0]
#Variable declaration
h = 6.63*10**-34 #Planck's constant(J-s)
m1 = 9.1*10**-31 #mass of electron(kg)
m2 = 10**-9 #mass of grain dust(kg)
L1 = 10**-9 #width(m)
L2 = 10**-4 #width(m)
#Calculation
#For electron
print "For an electron, the lowest thre energy states obtained for n=1,2 and 3 are"
for n in range(1,4):
En1 = ((n**2*h**2)/(8*m*L1**2))/(1.6*10**-19)
print round(En1,4),"eV"
#For the grain of dust
print "\nFor a grain of dust, the lowest thre energy states obtained for n=1,2 and 3 are"
for n in range(1,4):
En2 = ((n**2*h**2)/(8*m2*L2**2))/(1.6*10**-19)
print round(En2/1e-32,3),"eV"
import math
#Variable declaration
h = 6.63*10**-34 #Planck's constant(J-s)
m = 9.1*10**-31 #mass of electron(kg)
E1 = 38*1.6*10**-19 #energy(J)
#Calculation
L = math.sqrt(h**2/(8*m*E1))
#Result
print "Width of well =",round(L/1e-10,4),"A"
#Variable declaration
h = 6.63*10**-34 #Planck's constant(J-s)
m = 9.1*10**-31 #mass of electron(kg)
L = 5*10**-10 #width(m)
n1 = 1
n2 = 2
c = 3*10**8 #velocity of light(m/s)
#Calculation
E = ((3*h**2)/(8*m*L**2)) #E2-E1
Ev = E/(1.6-10**-19) #J
lamda = (h*c)/E
#Result
print "Energy =",round(Ev/1e-19,2),"eV"
print "Wavelength =",round(lamda/1e-7,3),"*10^-7 m"