#importing modules
import math
from __future__ import division
#Variable declaration
e=1.6*10**-19; #charge(coulomb)
epsilon0=8.85*10**-12;
r0=23.6*10**-10; #equilibrium distance(m)
I=5.14; #ionisation energy(eV)
EA=3.65; #electron affinity(eV)
N=8; #born constant
#Calculation
x=1-(1/N);
V=(e**2)*x/(4*e*math.pi*epsilon0*r0); #potential(V)
E=I-EA; #net energy(eV)
BE=round(V*10,2)-E; #bond energy(eV)
#Result
print "bond energy is",BE,"eV"
#importing modules
import math
from __future__ import division
#Variable declaration
e=1.6*10**-19; #charge(coulomb)
epsilon0=8.85*10**-12;
r0=0.41*10**-3; #equilibrium distance(m)
A=1.76; #madelung constant
n=0.5; #repulsive exponent value
#Calculation
beta=72*math.pi*epsilon0*r0**4/(A*e**2*(n-1)); #compressibility
#Result
print "compressibility is",round(beta/10**14,4),"*10**14"
print "answer in the book is wrong"
#importing modules
import math
from __future__ import division
#Variable declaration
e=1.6*10**-19; #charge(coulomb)
epsilon0=8.85*10**-12;
r0=0.314*10**-9; #equilibrium distance(m)
A=1.75; #madelung constant
N=5.77; #born constant
I=4.1; #ionisation energy(eV)
EA=3.6; #electron affinity(eV)
#Calculation
V=-A*e**2*((N-1)/N)/(4*e*math.pi*epsilon0*r0);
PE=round(V,2)/2; #potential energy per ion(eV)
x=(I-EA)/2;
CE=PE+x; #cohesive energy(eV)
#Result
print "cohesive energy is",CE,"eV"
#importing modules
import math
from __future__ import division
#Variable declaration
N=6.02*10**26; #Avagadro Number
e=1.6*10**-19; #charge(coulomb)
epsilon0=8.85*10**-12;
r0=0.324*10**-9; #equilibrium distance(m)
A=1.75; #madelung constant
n=8.5; #repulsive exponent value
#Calculations
U0=(A*e/(4*math.pi*epsilon0*r0))*(1-1//n);
U=round(U0,1)*N*e; #binding energy(J/kmol)
#Result
print "binding energy is",round(U/10**6),"*10**3 kJ/kmol"
print "answer in the book is wrong"
#importing modules
import math
from __future__ import division
#Variable declaration
rCs=0.165*10**-9; #radius(m)
rCl=0.181*10**-9; #radius(m)
MCs=133; #atomic weight
MCl=35.5; #atomic weight
N=6.02*10**26; #Avagadro Number
#Calculation
a=2*(rCl+rCs)/math.sqrt(3); #lattice constant(m)
M=(MCs+MCl)/N; #mass of 1 molecule(kg)
V=a**3; #volume of unit cell(m**3)
rho=M/V; #density of CsCl(kg/m**3)
#Result
print "density of CsClis",round(rho/10**3,3),"*10**3 kg/m**3"
print "answer in the book varies due to rounding off errors"
#importing modules
import math
from __future__ import division
#Variable declaration
dm=1.98*(10**-29)*(1/3); #dipole moment
l=0.92*10**-10; #bond length(m)
#Calculation
ec=dm/l; #effective charge(coulomb)
#Result
print "effective charge is",round(ec*10**19,2),"*10**-19 coulomb"
print "answer given in the book is wrong"
#importing modules
import math
from __future__ import division
#Variable declaration
e=1.6*10**-19; #charge(coulomb)
epsilon0=8.85*10**-12;
r=0.5*10**-9; #distance(m)
I=5; #ionisation energy(eV)
E=4; #electron affinity(eV)
#Calculation
C=e**2/(4*math.pi*epsilon0*e*r); #coulomb energy(eV)
Er=I-E-C; #energy required(eV)
#Result
print "energy required is",round(Er,1),"eV"
#importing modules
import math
from __future__ import division
from sympy import Symbol
import numpy as np
#Variable declaration
n=1;
m=9;
a=Symbol('a')
b=Symbol('b')
r=Symbol('r')
#Calculation
y=(-a/(r**n))+(b/(r**m));
y=diff(y,r);
y=diff(y,r);
#Result
print y
#since the values of a,b,r are declared as symbols in the above cell, it cannot be solved there. hence it is being solved here with the given variable declaration
#importing modules
import math
from __future__ import division
#Variable declaration
a=7.68*10**-29;
r0=2.5*10**-10; #radius(m)
#Calculation
b=a*(r0**8)/9;
y=((-2*a*r0**8)+(90*b))/r0**11;
E=y/r0; #young's modulus(Pa)
#Result
print "young's modulus is",int(E/10**9),"GPa"