#importing modules
import math
from __future__ import division
#Variable declaration
epsilonr=3.75; #relative dielectric constant
T=27; #temperature(C)
gama=1/3; #internal field constant
rho=2050; #density(kg/m**3)
Ma=32; #atomic weight(amu)
Na=6.022*10**23; #avagadro number
epsilon0=8.85*10**-12;
#Calculation
x=(epsilonr-1)/(epsilonr+2);
alpha_e=x*Ma*3*epsilon0/(rho*Na); #electronic polarisability(Fm**2)
#Result
print "electronic polarisability is",round(alpha_e*10**37,3),"*10**-37 Fm**2"
print "answer varies due to rounding off errors"
#importing modules
import math
from __future__ import division
#Variable declaration
A=100*10**-4; #area(m**2)
epsilon0=8.85*10**-12;
d=1*10**-2; #seperation(m)
V=100; #potential(V)
#Calculation
C=A*epsilon0/d; #capacitance(PF)
Q=C*V; #charge on plates(C)
#Result
print "capacitance is",C*10**12,"PF"
print "charge on plates is",Q,"C"
#importing modules
import math
from __future__ import division
#Variable declaration
epsilonr=1.0000684; #dielectric constant
N=2.7*10**25; #number of atoms
epsilon0=8.85*10**-12;
#Calculation
alpha_e=epsilon0*(epsilonr-1)/N; #polarisability(Fm**2)
#Result
print "polarisability is",alpha_e,"Fm**2"
print "answer varies due to rounding off errors"
#importing modules
import math
from __future__ import division
#Variable declaration
alpha_e=10**-40; #polarisability(Fm**2)
N=3*10**28; #density of atoms
epsilon0=8.85*10**-12;
#Calculation
x=N*alpha_e/epsilon0;
epsilonr=(1+(2*x))/(1-x); #dielectric constant(F/m)
#Result
print "dielectric constant is",round(epsilonr,3),"F/m"
print "answer in the book is wrong"
#importing modules
import math
from __future__ import division
#Variable declaration
A=650*10**-4; #area(m**2)
epsilon0=8.85*10**-12;
d=4*10**-2; #seperation(m)
Q=2*10**-10; #charge(C)
epsilonr=3.5; #dielectric constant
#Calculation
C=A*epsilon0/d;
V=Q/C; #voltage(V)
#Result
print "voltage is",round(V,1),"V"
#importing modules
import math
from __future__ import division
#Variable declaration
A=6.45*10**-4; #area(m**2)
epsilon0=8.85*10**-12;
d=2*10**-3; #seperation(m)
epsilonr=5; #dielectric constant
N=6.023*10**23; #avagadro number
#Calculation
alpha_e=epsilon0*(epsilonr-1)/N; #polarisability(Fm**2)
#Result
print "polarisability is",round(alpha_e*10**35,3),"*10**-35 Fm**2"
print "answer in the book is wrong"
#importing modules
import math
from __future__ import division
#Variable declaration
epsilonr=1.0000684; #dielectric constant
Na=2.7*10**25; #number of atoms
x=1/(9*10**9);
E=10**6; #electric field(V/m)
e=1.6*10**-19; #charge(c)
Z=2; #atomic number
#Calculation
r0=((epsilonr-1)/(4*math.pi*Na))**(1/3); #radius of electron cloud(m)
X=x*E*r0**3/(Z*e); #displacement(m)
#Result
print "radius of electron cloud is",round(r0*10**11,2),"*10**-11 m"
print "displacement is",round(X*10**17,4),"*10**-17 m"
#importing modules
import math
from __future__ import division
#Variable declaration
epsilonr=4; #relative dielectric constant
Na=2.08*10**23; #avagadro number
epsilon0=8.85*10**-12;
#Calculation
x=(epsilonr-1)/(epsilonr+2);
alpha_e=x*3*epsilon0/Na; #electronic polarisability(Fm**2)
#Result
print "electronic polarisability is",round(alpha_e*10**35,3),"*10**-35 Fm**2"
print "answer in the book is wrong"
#importing modules
import math
from __future__ import division
#Variable declaration
C=4*10**-6; #capacitance(F)
epsilonr=200; #relative dielectric constant
V=2000; #voltage(V)
#Calculation
C0=C/epsilonr; #energy in condenser(F)
E=C0*V/2; #energy in dielectric(J)
#Result
print "energy in condenser is",C0,"F"
print "energy in dielectric is",E*10**4,"*10**-4 J"
print "answer in the book is wrong"
#importing modules
import math
from __future__ import division
#Variable declaration
epsilon0=8.85*10**-12;
N=2.7*10**25; #density of atoms
R=0.55*10**-10; #radius(m)
#Calculation
alpha_e=4*math.pi*epsilon0*R**3; #polarisability(Fm**2)
epsilonr=(N*alpha_e/epsilon0)+1; #relative permittivity
#Result
print "polarisability is",round(alpha_e*10**40,3),"*10**-40 Fm**2"
print "relative permittivity is",round(epsilonr,7),"Fm**2"
#importing modules
import math
from __future__ import division
#Variable declaration
A=180*10**-4; #area(m**2)
epsilonr=8; #relative permittivity
C=3*10**-6; #capacitance(F)
V=10; #potential(V)
epsilon0=8.85*10**-12;
#Calculation
E=V*C/(epsilon0*epsilonr); #field strength(V/m)
dm=epsilon0*(epsilonr-1)*A*E; #total dipole moment(coul m)
#Result
print "field strength is",round(E/10**6,4),"*10**6 V/m"
print "total dipole moment is",dm*10**6,"*10**-6 Coul. m"
print "answer in the book is wrong"