#given
N=6.02*10**26; #in /Kg-molecule (Avogadro's number)
n=4; #number of molecules per unit cell ofr NaCl
M=58.5; #in Kg/Kg-molecule (molecular weight of NaCl)
p=2189; #in Kg/m^3 (density)
#calculate
a=pow(((n*M)/(N*p)),0.3333333);
a1=a*10**10; #changing unit to Angstrom
#result
print"The lattice constant is a=",'%.2E'%a,"m";
print"\t\t\ta=",round(a1,2),"Angstrom";
import math
from __future__ import division
#given
N=6.02*10**23; #in /gram-atom (Avogadro's number)
n=4; #number of atom per unit cell for fcc structure
M=63.5; #in gram/gram-atom (atomic weight of Cu)
p=8.96; #in g/cm^3 (density)
#calculate
a=pow((n*M/(N*p)),0.3333333);
a1=a*1E8; #changing unit from cm to Angstrom
d=a1/math.sqrt(2); #distance infcc lattice
#result
print"lattice constant is a=",'%.2E'%a,"cm";
print"\t\t a=",round(a1,2),"Angstrom";
print"distance between two nearest Cu atoms is d=",round(d,2),"Angstrom";
import math
from __future__ import division
#given
N=6.02E26; #in /Kg-atom (Avogadro's number)
n=2; #number of molecules per unit cell for bcc lattice
M=55.85; #in Kg/Kg-atom (atomic weight of Iron)
p=7860; #in Kg/m^3 (density)
#calculate
a=pow((n*M/(N*p)),0.33333);
a1=a*1E10; #changing unit to Angstrom
#result
print"The lattice constant is a=",'%.2E'%a,"m";
print"\t\t\ta=",round(a1,2),"Angstrom";
import math
from __future__ import division
#given
N=6.02*10**26; #in /Kg-atom (Avogadro's number)
n=2; #number of molecules per unit cell for bcc lattice
M=6.94; #in Kg/Kg-atom (atomic weight of Iron)
p=530; #in Kg/m^3 (density)
#calculate
a=pow((n*M/(N*p)),0.33333);
a1=a*1E10; #changing unit to Angstrom
#result
print"The lattice constant is a=",'%.2E'%a,"m";
print"\t\t\ta=",round(a1,2),"Angstrom";
import math
from __future__ import division
#given
N=6.02*10**23; #in /gram-molecule (Avogadro's number)
M=58.5; #in gram/gram-molecule (atomic weight of NaCl)
p=2.17; #in g/cm^3 (density)
#calculate
#since V=M/p
#(1/d)^-3=2N/V=2Np/M
#therefore d= (M/2Np)^-3
d=pow((M/(2*N*p)),0.33333333);
d1=d*1*10**8; #changing unit from cm to Angstrom
#result
print"The distance between two adjacent atoms of NaCl is d=",'%.2E'%d,"m";
print"\t\t\t\t\t\t d=",round(d1,2),"Angstrom";
import math
from __future__ import division
#given
r_Na=0.98; #in Angstrom (radius of sodium ion)
r_Cl=1.81; #in Angstrom (radius of chloride ion)
M_Na=22.99; #in amu (atomic mass of sodium)
M_Cl=35.45; #in amu (atomic mass of chlorine)
#calculate
a=2*(r_Na+r_Cl); #lattice parameter
#PF=volume of ions present in the unit cell/volume of unit cell
PF=((4*(4/3)*3.14)*r_Na**3+(4*(4/3)*3.14)*r_Cl**3)/a**3;
#Density=mass of unit cell/volume of unit cell
p=4*(M_Na+M_Cl)*1.66E-27/(a*1E-10)**3;
p1=p*1E-3; #changing unit to gm/cm^-3
#result
print"Lattice constant is a=",round(a,3),"Angstrom";
print"Packing fraction is =",round(PF,3);
print"Density is p=",round(p),"Kg/m^3";
print"Density is p=",round(p1,2),"g/cm^3";