import math
from __future__ import division
#given
lambda1=1; #in Angstrom (wavelength)
m=1.67E-27; #in Kg (mass of neutron)
h=6.625E-34; #in J-s (Planck's constant)
e=1.6E-19; #in C (charge of electron)
#calculate
lambda2=lambda1*1E-10; #since lambda is in Angstrom
#Since lambda=h/(m*v)
#Therefore we have
v=h/(m*lambda2); #calculation of velocity
K=m*v**2/2; #calculation of kinetic energy
K1=K/e; #changing unit fro J to eV
#result
print"The velocity is v=",round(v,3),"m/s";
print"The kinetic energy is K=",'%.3E'%K,"J";
print"\t\t =",'%.3E'%K1,"eV";
import math
from __future__ import division
#given
K=50; #in eV (Kinetic energy)
m0=9.1E-31; #in Kg (mass of electron)
h=6.625E-34; #in J-s (Planck's constant)
e=1.6E-19; #in C (charge of electron)
#calculate
K=K*e; #changing unit from eV to J
#Since K=m*v^2/2
#Therefore v=sqrt(2*K/m)
#Since lambda=h/(m*v)
#Therefore we have
lambda1=h/math.sqrt(2*m0*K); #calculation of wavelength
lambda2=lambda1*1E10; #changing unit from m to Angstrom
#result
print"The wavelength is =",'%.3E'%lambda1,"m";
print"\t\t =",round(lambda2,3),"Angstrom";
import math
from __future__ import division
#given
E=2000; #in eV (Kinetic energy)
m=9.1E-31; #in Kg (mass of electron)
h=6.625E-34; #in J-s (Planck's constant)
e=1.6E-19; #in C (charge of electron)
#calculate
E=E*e; #changing unit from eV to J
#Since E=m*v^2/2
#Therefore v=sqrt(2*E/m)
#Since lambda=h/(m*v)
#Therefore we have
lambda1=h/math.sqrt(2*m*E); #calculation of wavelength
lambda2=lambda1*1E9; #changing unit from m to nanometer
#result
print"The wavelength is =",'%.3E'%lambda1,"m";
print"\t\t =",round(lambda2,4),"nm";
import math
from __future__ import division
#given
m_e=9.1E-31; #in Kg (mass of electron)
m_n=1.676E-27; #in Kg (mass of neutron)
h=6.625E-34; #in J-s (Planck's constant)
c=3E8; #in m/s (velocity of light)
#calculate
E_e=m_e*c**2; #rest mass energy of electron
E_n=2*E_e; #given (kinetic energy of neutron)
#Since K=m*v^2/2
#Therefore v=sqrt(2*K/m)
#Since lambda=h/(m*v)
#Therefore we have
lambda1=h/math.sqrt(2*m_n*E_n); #calculation of wavelength
lambda2=lambda1*1E10; #changing unit from m to Angstrom
#result
print"The wavelength is =",'%.3E'%lambda1,"m";
print"\t\t =",'%.3E'%lambda2,"Angstrom";
import math
from __future__ import division
#given
V=1600; #in V (Potential)
#calculate
lambda1=12.27/math.sqrt(V); #calculation of wavelength in Angstrom
#result
print"The wavelength is =",round(lambda1,3),"Angstrom";
print "Note : The answer in the book is wrong "
import math
from __future__ import division
#given
E=1000; #in eV (Kinetic energy of photon)
K=1000; #in eV (Kinetic energy of electron)
m0=9.1E-31; #in Kg (mass of electron)
h=6.6E-34; #in J-s (Planck's constant)
c=3E8; #in m/s (velocity of light)
e=1.6E-19; #in C (charge on electron)
#calculate
E=E*e; #changing unit from eV to J
lambda_p=h*c/E; #For photon E=hc/lambda
lambda_p1=lambda_p*1E10; #changing unit from m to Angstrom
#Since K=m*v^2/2
#Therefore v=sqrt(2*K/m)
#Since lambda=h/(m*v)
#Therefore we have
K=K*e; #changing unit from eV to J
lambda_e=h/math.sqrt(2*m0*K); #calculation of wavelength
lambda_e1=lambda_e*1E10; #changing unit from m to Angstrom
#result
print"For photon,the wavelength is =",'%.3E'%lambda_p,"m";
print"\t\t\t =",round(lambda_p1,1),"Angstrom";
print"For electron,the wavelength is =",'%.3E'%lambda_e,"m";
print"\t\t\t =",round(lambda_e1,2),"Angstrom";
import math
from __future__ import division
#given
lambda1=1.66*10**-10; #in m (wavelength)
m=9.1*10**-31; #in Kg (mass of electron)
h=6.626*10**-34; #in J-s (Planck's constant)
e=1.6E-19; #in C (charge on electron)
#calculate
#Since lambda=h/(m*v)
#Therefore we have
v=h/(m*lambda1); #calculation of velocity
K=m*v**2/2; #calculation of kinetic energy
K1=K/e; #changing unit from J to eV
#result
print"The velocity of electron is v=",'%.2E'%v,"m/s";
print"The kinetic energy is K=",'%.2E'%K,"J";
print"\t\t =",round(K1,3),"eV";
print "Note: The answer in the book for kinetic energy is wrong "
import math
from __future__ import division
#given
T=400; #in K (temperature)
m=6.7E-27; #in Kg (mass of He-atom)
h=6.6E-34; #in J-s (Planck's constant)
k=1.376E-23; #in J/degree (Boltzmann constant)
#calculate
#Since lambda=h/(m*v)
#E=mv^2/2;
#Therefore lambda=h/sqrt(2*m*E)
#E=kT
#Therefore lambda=h/sqrt(2*m*k*T)
lambda1=h/math.sqrt(2*m*k*T)
lambda2=lambda1*1E10; #changing unit from m to Angstrom
#result
print"The de-Broglie wavelength of He-atom is =",'%.2E'%lambda1,"m";
print"\t\t\t\t =",round(lambda2,4),"Angstrom";
import math
from __future__ import division
#given
m_e=9.1E-31; #in Kg (mass of electron)
m_p=1.6E-27; #in Kg (mass of proton)
h=6.626E-34; #in J-s (Planck's constant)
c=3E8; #in m/s (velocity of light)
#calculate
E=m_e*c**2; #in J (rest energy of electron)
#Since lambda=h/(m*v)
#E=mv^2/2;
#herefore lambda=h/sqrt(2*m*E)
#Also E=m_e*c^2;
#therefore lambda=h/sqrt(2*m_p*m_e*c^2)
lambda1=h/math.sqrt(2*m_p*m_e*c**2); #calculation of wavelength
lambda2=lambda1*1*10**10; #changing unit from m to Angstrom
#result
print"The de-Broglie wavelength of proton is =",'%.2E'%lambda1,"m";
print"\t\t\t\t =",'%.2E'%lambda2,"Angstrom";
import math
from __future__ import division
#given
V=10000; #in V (Potential)
#calculate
lambda1=12.27/math.sqrt(V); #calculation of wavelength in Angstrom
#result
print"The wavelength is =",round(lambda1,3),"Angstrom";
import math
from __future__ import division
#given
V=100; #in V (Potential)
n=1; #order of diffraction
d=2.15; #in Angstrom (lattice spacing)
#calculate
lambda1=12.27/math.sqrt(V); #calculation of wavelength in Angstrom
#Since 2*d*sind(theta)=n*lambda
#therefore we have
theta=math.asin(n*lambda1/(2*d)); #calculation of glancing angle
theta1=theta*180/3.14;
#result
print"The wavelength is =",round(lambda1,3),"Angstrom";
print"The glancing angle is =",round(theta1,1),"degree";
print "Note: In question V=100 eV but the solution is using V=100V "
import math
from __future__ import division
#given
V=344; #in V (Potential)
n=1; #order of diffraction
theta=60; #in degree (glancing angle)
#calculate
lambda1=12.27/math.sqrt(V); #calculation of wavelength in Angstrom
#Since 2*d*sind(theta)=n*lambda
#therefore we have
d=n*lambda1/(2*math.sin(math.radians(theta))); #calculation of spacing constant
#result
print"The wavelength is =",round(lambda1,3),"Angstrom";
print"The spacing of the crystal is =",round(d,4),"Angstrom";
import math
from __future__ import division
#given
r=0.53*10**-10; #in m (radius of first Bohr orbit)
h=6.6*10**-34; #in J-s (Planck's constant)
m=9.1*10**-31; #in Kg (mass of electron)
n=1; #First Bohr orbit
pi=3.14; #value of pi used in the solution
#calculate
#Since 2*pi*r=n*lambda and lambda=h/(m*v)
#Threfore we have v=h*n/(2*pi*r*m)
v=h*n/(2*pi*r*m); #calculation of velocity
#result
print"The velocity of electron is =",'%.3E'%v,"m/s";
import math
from __future__ import division
#given
dx=0.2; #in Angstrom (uncertainty in the position)
h=6.6E-34; #in J-s (Planck's constant)
m0=9.1E-31; #in Kg (mass of electron)
pi=3.14; #value of pi used in the solution
#calculate
dx=dx*1E-10; #since dx is in Angstrom
#Since dx*dp=h/4*pi (uncertainty relation)
dp=h/(4*pi*dx); #calculation of uncertainty in the momentum
#since dp=m*dv
dv=dp/m0; #calculation of uncertainty in the velocity
#result
print"The uncertainty in the momentum is dp=",'%.3E'%dp,"Kg-m/";
print"The uncertainty in the velocity is dv=",'%.3E'%dv,"m/s";
import math
from __future__ import division
#given
m_e=9.1E-31; #in Kg (mass of electron)
m_p=1.67E-27; #in Kg (mass of proton)
dx_p=1; #in nanometer (uncertainty in position of electron)
dx_n=1; #in nanometer (uncertainty in position of proton)
#calculate
#since dp=h/(4*pi*dx)
#since h/(4*pi) is constant and dx is same for electron and proton
#therefor both electron and proton have same uncertainty in the momentum
#since dv=dp/m and dp is same for both
#therefore dv_e/dv_p=m_p/m_e
#therefore
K=m_p/m_e; #ratio of uncertainty in the velocity of electron and proton
#result
print"The ratio of uncertainty in the velocity of electron to that of proton is =",round(K);
import math
from __future__ import division
#given
dx=5*10**-15; #in m (radius of nucleus or uncertainty in the position)
h=6.6*10**-34; #in J-s (Planck's constant)
m=1.67E-27; #in Kg (mass of proton)
pi=3.14; #value of pi used in the solution
e=1.6E-19; #in C (charge of electron)
#calculate
#Since dx*dp=h/4*pi (uncertainty relation)
dp=h/(4*pi*dx); #calculation of uncertainty in the momentum
p=dp; #minimum value of momentum to calculate mimimum kinetic energy
K=(p**2)/(2*m); #calculation of minimum kinetic energy of proton
K1=K/e; #changing unit from J to eV
K2=K1/1E6; #changing unit from eV to MeV
#result
print"The minimum uncertainty in the momentum of proton is dp =",'%.3E'%dp,"Kg-m/s";
print"The minimum kinetic energy of proton is K=",'%.3E'%K,"J";
print"\t\t\t\t \t =",'%.3E'%K1,"eV";
print"\t\t\t\t\t =",round(K2,1),"MeV";
import math
from __future__ import division
#given
K=1; #in KeV (kinetic energy of electron)
dx=1; #in Angstrom (uncertainty in the position)
h=6.63E-34; #in J-s (Planck's constant)
m=9.1E-31; #in Kg (mass of electron)
pi=3.14; #value of pi used in the solution
e=1.6E-19; #in C (charge of electron)
#calculate
dx=dx*1E-10; #since dx is in Angstrom
#Since dx*dp=h/4*pi (uncertainty relation)
dp=h/(4*pi*dx); #calculation of uncertainty in the momentum
K=K*1E3*1.6E-19; #changing unit from KeV to J
p=math.sqrt(2*m*K); #calculation of momentum
poc=(dp/p)*100; #calculation of percentage of uncertainty
#result
print"The uncertainty in the momentum of electron is dp=",'%.3E'%dp,"Kg-m/s";
print"The momentum of electron is p=",'%.3E'%p,"Kg-m/s";
print"The percentage of uncertainty in the momentum is =",round(poc,1);
import math
from __future__ import division
#given
v=6.6E4; #m/s (speed of electron)
poc=0.01; #percentage of uncertainty
h=6.63E-34; #in J-s (Planck's constant)
m=9E-31; #in Kg (mass of electron)
pi=3.14; #value of pi used in the solution
#calculate
p=m*v; #calculation of momentum
dp=(poc/100)*p; #calculation of uncertainty in the momentum
#Since dx*dp=h/4*pi (uncertainty relation)
dx=h/(4*pi*dp); #calculation of uncertainty in the position
#result
print"The momentum of electron is p=",'%.3E'%p,"Kg-m/s";
print"The uncertainty in the momentum of electron is dp=",'%.3E'%dp,"Kg-m/s";
print"The uncertainty in the position of electron is dx=",'%.3E'%dx,"Kg-m/s";
import math
from __future__ import division
#given
lambda1=1; #in Angstrom (wavelength)
pi=3.14; #value of pi used in the solution
dlambda=1E-6; #uncertainty in wavelength
#calculate
lambda2=lambda1*1E-10; #sinc lambda is in Angstrom
#By uncertainty principle, dx*dp>=h/(4*pi) --(1)
#since p=h/lambda -----(2)
#Or p*lambda=h
#diffrentiting this equation
#p*dlambda+lambda*dp=0
#dp=-p*dlambda/lambda ----(3)
#from (2) and (3) dp=-h*dlambda/lambda^2 ---(4)
#from (1) and(4) dx*dlambda>=lambda^2/4*pi
#Or dx=lambda^2/(4*pi*dlambda)
dx=lambda2**2/(4*pi*dlambda); #calculation of uncertainty in the position
#result
print"The uncertainty in the position of X-ray photon is dx=",'%.3E'%dx,"m";
print "Note: wavelength accuracy is given as 1 in 1E8 but in book solution has used 1 in 1E6 "
print " ANSWEER IS WRONG IN THE TEXTBOOK"
import math
from __future__ import division
#given
dt=1*10**-8; #in sec (average life time)
pi=3.14; #value of pi used in the solution
#calculate
#Since dE*dt>=h/(4*pi) (uncertainty relation for energy)
#and E=h*v v is the frequency
#therefore we have dv>=1/(4*pi*dt)
dv=1/(4*pi*dt); #calculation of minimum uncertainty in the frequency
#result
print"The minimum uncertainty in the frequency of the photon is dv=",'%.3E'%dv,"sec^-1";
import math
from __future__ import division
#given
dt=1E-12; #in sec (average life time)
h=6.63E-34; #in J-s (Planck'c constant)
pi=3.14; #value of pi used in the solution
e=1.6*1E-19; #in C (charge of electron)
#calculate
#Since dE*dt>=h/(4*pi) (uncertainty relation for energy)
dE=h/(4*pi*dt); #calculation of minimum uncertainty in the energy
dE1=dE/e; #changing unit from J to eV
#result
print"The uncertainty in the energy of the photon is dE=",'%.3E'%dE,"J";
print"\t\t\t\t\t =",'%.3E'%dE1,"eV";
import math
from __future__ import division
#given
dT=2.5E-14; #in sec (average life time)
h=6.63E-34; #in J-s (Planck'c constant)
pi=3.14; #value of pi used in the solution
e=1.6*1E-19; #in C (charge of electron)
#calculate
#Since dE*dt>=h/(4*pi) (uncertainty relation for energy)
dE=h/(4*pi*dT); #calculation of minimum uncertainty in the energy
dE1=dE/e; #changing unit from J to eV
#result
print"The uncertainty in the energy of the photon is dE=",'%.3E'%dE,"J";
print"\t\t\t\t\t =",'%.3E'%dE1,"eV";
import math
from __future__ import division
#given
a=2; #in Angstrom (length of the box)
m=9.1E-31; #in Kg (mass of electron)
h=6.626E-34; #in J-s (Planck'c constant)
n2=2; n4=4; #two quantum states
e=1.6*1E-19; #in C (charge of electron)
#calculate
a=a*1E-10; #since a is in Angstrom
#Since E_n=n^2*h^2/(8*m*a^2) (Energy corresponding to nth quantum state)
E2=n2**2*h**2/(8*m*a**2); #calculation of energy corresponding to the 2nd quantum state
E21=E2/e; #changing unit from J to eV
E4=n4**2*h**2/(8*m*a**2); #calculation of energy corresponding to the 4nd quantum state
E41=E4/e; #changing unit from J to eV
#result
print"The energy corresponding to the 2nd quantum state is E2=",'%.3E'%E2,"J";
print"\t\t\t\t\t\t =",'%.3E'%E21,"eV";
print"The energy corresponding to the 4nd quantum state is E4=",'%.3E'%E4,"J";
print"\t\t\t\t\t\t =",'%.3E'%E41,"eV";
import math
from __future__ import division
#given
a=1E-10; #in m (width of the well)
m=9.1E-31; #in Kg (mass of electron)
h=6.626E-34; #in J-s (Planck'c constant)
n1=1; n2=2; n3=3; #ground and first two excited states
e=1.6*1E-19; #in C (charge of electron)
#calculate
#Since E_n=n^2*h^2/(8*m*a^2) (Energy corresponding to nth quantum state)
E1=n1**2*h**2/(8*m*a**2); #calculation of energy corresponding to the Ground state
E11=E1/e; #changing unit from J to eV
E2=n2**2*h**2/(8*m*a**2); #calculation of energy corresponding to the 1st excited state
E21=E2/e; #changing unit from J to eV
E3=n3**2*h**2/(8*m*a**2); #calculation of energy corresponding to the 2nd excited state
E31=E3/e; #changing unit from J to eV
#result
print"The energy corresponding to the ground state is E1=",'%.3E'%E1,"J";
print"\t\t\t\t\t =",'%.3E'%E11,"eV";
print"The energy corresponding to the 1st excited state is E2=",'%.3E'%E2,"";
print"\t\t\t\t\t =",'%.3E'%E21,"eV";
print"The energy corresponding to the 2nd excited state is E3=",'%.3E'%E3,"J";
print"\t\t\t\t\t =",'%.3E'%E31,"eV";
print " There is slight variation in the answer due to round off error"
import math
from __future__ import division
#given
dx=1E-8; #in m (length of box or uncertainty in the position)
h=6.626E-34; #in J-s (Planck'c constant)
m=9.1E-31; #in Kg (mass of electron)
#calculate
#From uncertainty principle dx*dp=h and dp=m*dv
#therefore we have
dv=h/(m*dx); #calculation of minimum uncertainty in the velocity
dv1=dv*1E-3; #changing unit from m/s to Km/s
#result
print"The minimum uncertainty in the velocity of electron i dv=",'%.3E'%dv,"m/s";
print"\t\t\t\t\t\t =",round(dv1,2),"Km/s";
print "Note: There is slight variation in the answer due to round off error"
import math
from __future__ import division
#given
a=4E-10; #in m (length of the box)
m=9.1E-31; #in Kg (mass of electron)
h=6.626E-34; #in J-s (Planck'c constant)
n1=1; #ground state
e=1.6*1E-19; #in C (charge of electron)
#calculate
#Since E_n=n^2*h^2/(8*m*a^2) (Energy corresponding to nth quantum state)
E1=n1**2*h**2/(8*m*a**2); #calculation of energy corresponding to the ground state
E11=E1/e; #changing unit from J to eV
#result
print"The minimum energy of electron is E1=",'%.3E'%E1,"J (Note: The answer in the book is wrong due to printing error)";
print"\t\t\t\t =",round(E11,3),"eV";