#importing modules
import math
from __future__ import division
#Variable declaration
M = 1.4 #field(T)
H = 6.5*10**-4 #magnetic field(T)
#Calculation
chi = M/H #susceptibility
mew_r = 1+chi #relative permeability
#Result
print "relative permeability of iron is",round(mew_r)
print "answer given in the book is wrong"
#importing modules
import math
from __future__ import division
#Variable declaration
M = 3300 #magnetisation(amp/m)
H = 220 #field strength(amp/m)
#Calculation
mew_r = (M/H)+1 #relative permeability
#Result
print "relative permeability of material is",mew_r
#importing modules
import math
from __future__ import division
#Variable declaration
H = 10**6 #magnetic field intensity(amp/m)
chi = 1.5*10**-3 #susceptibility
#Calculation
mew0 = 4*math.pi*10**-7
M = chi*H #magnetisation(A/m)
B = mew0*(M+H) #flux density(T)
M = M*10**-3
B = math.ceil(B*10**3)/10**3 #rounding off to 3 decimals
#Result
print "magnetisation of material is",M,"*10**3 A/m"
print "flux density is",B,"T"
print "answer for flux density B given in the book is wrong"
#importing modules
import math
from __future__ import division
#Variable declaration
H = 10**4 #magnetic field intensity(amp/m)
chi = 3.7*10**-3 #susceptibility
#Calculation
mew0 = 4*math.pi*10**-7
M = chi*H #magnetisation(A/m)
B = mew0*(M+H) #flux density(Wb/m**2)
B = math.ceil(B*10**5)/10**5 #rounding off to 5 decimals
#Result
print "magnetisation of material is",M,"A/m"
print "flux density is",B,"Wb/m**2"
#importing modules
import math
from __future__ import division
#Variable declaration
I = 500 #current(mA)
d = 10 #diameter(cm)
#Calculation
I = I*10**-3 #current(A)
r = d/2 #radius(cm)
r = r*10**-2 #radius(m)
A = 2*math.pi*r**2 #area(m**2)
mew_m = I*A #magnetic moment(Am**2)
mew_m = mew_m*10**3
mew_m = math.ceil(mew_m*10**3)/10**3 #rounding off to 3 decimals
#Result
print "magnetic moment associated with the loop is",mew_m,"*10**-3 Am**2"
print "answer given in the book is wrong in the 3rd decimal"
#importing modules
import math
from __future__ import division
#Variable declaration
r = 5.29*10**-11 #radius of orbit(m)
B = 2 #field applied(T)
e = 1.602*10**-19 #charge of electron(coulomb)
m = 9.108*10**-31 #mass of electron(kg)
#Calculation
mew_ind = e**2*r**2*B/(4*m) #change in magnetic moment(Am^2)
#Result
print "change in magnetic moment is",round(mew_ind/1e-29,3),"*10^-29 Am**2"
#importing modules
import math
from __future__ import division
#Variable declaration
chi_1 = 2.8*10**-4 #susceptibility
T1 = 350 #temperature(K)
T2 = 300 #temperature(K)
#Calculation
#chi = C/T where C is curie constant
chi_2 = chi_1*T1/T2 #susceptibility at 300 K
chi_2 = chi_2*10**4
chi_2 = math.ceil(chi_2*10**3)/10**3 #rounding off to 3 decimals
#Result
print "susceptibility at 300 K is",chi_2,"*10**-4"
#importing modules
import math
from __future__ import division
#Variable declaration
d = 8906 #density(kg/m**3)
n = 6.025*10**26 #avagadro number
AW = 58.7 #atomic weight
Bs = 0.65 #magnetic induction(Wb/m**2)
mewB = 9.27*10**-24
#Calculation
N = d*n/AW #number of atoms(per m**3)
mew0 = 4*math.pi*10**-7
mew_m = Bs/(N*mew0) #magnetic moment(Am**2)
mew_m = mew_m/mewB #magnetic moment(mewB)
mew_m = math.ceil(mew_m*10**3)/10**3 #rounding off to 3 decimals
#Result
print "the magnetic moment of Ni is",mew_m,"mewB"
#importing modules
import math
from __future__ import division
#Variable declaration
H = 2 #magnetic field(Wb/m**2)
mew = 9.4*10**-24
k = 1.38*10**-23
#Calculation
#np = C*n0*math.exp(mew*H/(k*T))
#na = C*n0*math.exp(-mew*H/(k*T))
#np/na = exp(mew*H/(k*T))/exp(-mew*H/(k*T)) = exp(2*mew*H/(k*T))
#given np/na = 2. therefore exp(2*mew*H/(k*T)) = 2
T = 2*mew*H/(k*math.log(2)) #temperature(K)
T = math.ceil(T*10**2)/10**2 #rounding off to 2 decimals
#Result
print "temperature is",T,"K"
#importing modules
import math
from __future__ import division
#Variable declaration
AW = 157.26 #atomic weight
d = 7.8*10**3 #density(kg/m**3)
A = 6.025*10**26 #avagadro number
mew0 = 4*math.pi*10**-7
N = d*A/AW #number of atoms 1 kg contains
g = N/10**3 #number of atoms 1 g contains
mew_B = 7.1 #bohr magneton
mew_m = 9.27*10**-24
mew_mg = g*mew_B*mew_m #magnetic moment per gram(Am**2)
mew_mg = math.ceil(mew_mg*10**3)/10**3 #rounding off to 3 decimals
print "magnetic moment per gram is",mew_mg,"Am**2"
Bs = N*mew0*mew_m #saturation magnetisation(Wb/m**2)
Bs = math.ceil(Bs*10**4)/10**4 #rounding off to 4 decimals
print "saturation magnetisation is",Bs,"Wb/m**2"
print "answers given in the book are wrong"