#importing modules
import math
from __future__ import division
#Variable declaration
Tc = 3.7 #critical temperature(K)
Hc_0 = 0.0306 #critical field(T)
T = 2 #temperature(K)
#Calculation
Hc_2 = Hc_0*(1-(T/Tc)**2) #critical field(T)
Hc_2 = math.ceil(Hc_2*10**5)/10**5 #rounding off to 5 decimals
#Result
print "critical field at 2K is",Hc_2,"T"
#importing modules
import math
from __future__ import division
#Variable declaration
T = 4.2 #temperature(K)
d = 1 #diameter(mm)
Tc = 7.18 #critical temperature(K)
H0 = 6.5*10**4 #critical field(A/m)
#Calculation
d = d*10**-3 #diameter(m)
Hc = H0*(1-((T/Tc)**2)) #critical field at 2K(A/m)
ic = math.pi*d*round(Hc); #critical current(A)
ic = math.ceil(ic*10**2)/10**2; #rounding off to 2 decimals
#Result
print "critical current for lead is",ic,"A"
print "answer given in the book differs due to rounding off errors"
#importing modules
import math
from __future__ import division
#Variable declaration
lamda_T = 750 #penetration depth of mercury(Armstrong)
T = 3.5 #temperature(K)
Tc = 4.12 #critical temperarure(K)
#Calculation
lamda_0 = lamda_T*((1-(T/Tc)**4))**(1/2) #penetration depth(Armstrong)
#Result
print "penetration depth at 0K is",int(lamda_0),"armstrong"
#importing modules
import math
from __future__ import division
#Variable declaration
T1 = 3 #temperature(K)
T2 = 7.1 #temperature(K)
lamda_T1 = 396 #penetration depth(armstrong)
lamda_T2 = 1730 #penetration depth(armstrong)
#Calculation
A = (((lamda_T2/lamda_T1)**2)*T2**4) - T1**4
B = ((lamda_T2/lamda_T1)**2)-1
Tc = (A/B)**(1/4) #critical temperature(K)
Tc = math.ceil(Tc*10**4)/10**4; #rounding off to 4 decimals
#Result
print "critical temperature for lead is",Tc,"K"