#importing modules
import math
from __future__ import division
#Variable declaration
E_EF=0.5; #fermi energy(eV)
FE=1/100; #probability
Kb=1.381*10**-23; #boltzmann constant(J/k)
x=6.24*10**18;
#Calculation
KB=Kb*x;
y=E_EF/KB;
T=y/math.log(1/FE); #temperature(K)
#Result
print "temperature is",round(T,2),"K"
print "answer given in the book is wrong"
#importing modules
import math
from __future__ import division
#Variable declaration
e=1.602*10**-19; #charge(c)
m=9.11*10**-31; #mass(kg)
h=6.63*10**-34; #plancks constant(Js)
Ef=7*e; #fermi energy(J)
#Calculation
x=Ef*8*m/h**2;
n23=x/((3/math.pi)**(2/3));
n=n23**(3/2); #total number of free electrons(electrons/m**3)
#Result
print "total number of free electrons is",round(n/10**28,4),"*10**28 electrons/m**3"
print "answer in the book varies due to rounding off errors"
#importing modules
import math
from __future__ import division
#Variable declaration
rho=1.54*10**-8; #resistivity(ohm m)
n=5.8*10**28; #number of electrons
e=1.602*10**-19; #charge(c)
m=9.11*10**-31; #mass(kg)
#Calculation
tow=m/(n*e**2*rho); #relaxation time(s)
#Result
print "relaxation time is",round(tow*10**15,3),"*10**-15 s"
print "answer in the book varies due to rounding off errors"
#importing modules
import math
from __future__ import division
#Variable declaration
rho=1.43*10**-8; #resistivity(ohm m)
n=6.5*10**28; #number of electrons
e=1.6*10**-19; #charge(c)
m=9.1*10**-31; #mass(kg)
#Calculation
tow=m/(n*e**2*rho); #relaxation time(s)
#Result
print "relaxation time is",round(tow*10**14,2),"*10**-14 s"
#importing modules
import math
from __future__ import division
#Variable declaration
D=2.7*10**3; #density(kg/m**3)
rho=2.7*10**-8; #resistivity(ohm m)
w=26.98; #atomic weight
Na=6.025*10**26; #avagadro number
e=1.6*10**-19; #charge(c)
L=5; #length(m)
R=0.06; #resistance(ohm)
I=15; #current(A)
n=3; #number of electrons
#Calculation
N=n*D*Na/w; #number of conduction electrons(/m**3)
mew=1/(rho*N*e); #mobility(m**2/Vs)
vd=I*R/(L*rho*N*e); #drift velocity(m/s)
#Result
print "number of conduction electrons is",round(N/10**29,4),"*10**29 /m**3"
print "mobility is",round(mew,5),"m**2/Vs"
print "drift velocity is",round(vd*10**4,1),"*10**-4 m/s"
#importing modules
import math
from __future__ import division
#Variable declaration
D=8.92*10**3; #density(kg/m**3)
rho=1.73*10**-8; #resistivity(ohm m)
W=63.5; #atomic weight
Na=6.02*10**26; #avagadro number
e=1.6*10**-19; #charge(c)
#Calculation
n=D*Na/W;
mew=1/(rho*n*e); #mobility(m**2/Vs)
#Result
print "mobility is",round(mew,5),"m**2/Vs"
print "answer given in the book is wrong"
#importing modules
import math
from __future__ import division
#Variable declaration
D=8.95*10**3; #density(kg/m**3)
rho=1.721*10**-8; #resistivity(ohm m)
W=63.54; #atomic weight
Na=6.025*10**26; #avagadro number
e=1.6*10**-19; #charge(c)
#Calculation
n=D*Na/W;
mew=1/(rho*n*e); #mobility(m**2/Vs)
#Result
print "mobility is",round(mew,5),"m**2/Vs"
print "answer given in the book is wrong"
#importing modules
import math
from __future__ import division
#Variable declaration
rho=1.50*10**-8; #resistivity(ohm m)
n=6.5*10**28; #conduction electrons(per m**3)
e=1.602*10**-19; #charge(c)
m=9.11*10**-31; #mass(kg)
#Calculation
tow=m/(n*e**2*rho); #relaxation time(sec)
#Result
print "relaxation time is",round(tow*10**14,2),"*10**-14 s"
#importing modules
import math
from __future__ import division
#Variable declaration
m=9.11*10**-31; #mass(kg)
rho=1.54*10**-8; #resistivity(ohm m)
e=1.602*10**-19; #charge(c)
E=10**2; #electric field(V/m)
n=5.8*10**28; #number of electrons
Kb=1.381*10**-23; #boltzmann constant
T=300; #temperature(K)
#Calculation
tow=m/(n*e**2*rho); #relaxation time(s)
vd=e*E*tow/m; #drift velocity(m/s)
mew=vd/E; #mobility(m**2/Vs)
Vth=math.sqrt(3*Kb*T/m); #thermal velocity(m/s)
#Result
print "relaxation time is",round(tow*10**14,2),"*10**-14 s"
print "drift velocity is",round(vd,1),"m/s"
print "mobility is",round(mew*10**2,1),"*10**-2 m**2/Vs"
print "thermal velocity is",round(Vth/10**5,2),"*10**5 m/s"
#importing modules
import math
from __future__ import division
#Variable declaration
m=9.11*10**-31; #mass(kg)
e=1.602*10**-19; #charge(c)
E=5.5; #fermi energy(V/m)
tow=3.97*10**-14; #relaxation time(s)
#Calculation
Vf=math.sqrt(2*E*e/m); #fermi velocity(m/s)
lamda=Vf*tow; #mean free path(m)
#Result
print "fermi velocity is",round(Vf/10**6,2),"*10**6 m/s"
print "mean free path is",round(lamda*10**8,2),"*10**-8 m"
#importing modules
import math
from __future__ import division
#Variable declaration
n=1; #number of electrons
NA=6.025*10**26; #avagadro number
D=10500; #density(kg/m**3)
M=107.9; #atomic weight(kg)
m=9.11*10**-31; #mass(kg)
h=6.63*10**-34; #plancks constant(Js)
#Calculation
n=n*NA*D/M; #electronic concentration(per m**3)
x=(3*n/math.pi)**(2/3);
Ef=h**2*x/(8*m); #fermi energy(J)
#Result
print "electronic concentration is",round(n/10**28,3),"*10**28 per m**3"
print "fermi energy is",round(Ef*10**19,2),"*10**-19 J"
#importing modules
import math
from __future__ import division
#Variable declaration
D=8.92*10**3; #density(kg/m**3)
w=63.5; #atomic weight
Na=6.02*10**26; #avagadro number
e=1.6*10**-19; #charge(c)
I=100; #current(A)
A=10*10**-6; #area(m**2)
n=1;
#Calculation
J=I/A; #current density(amp/m**2)
n=n*Na*D/w;
vd=J/(n*e); #drift velocity(m/s)
#Result
print "current density is",int(J/10**7),"*10**7 amp/m**2"
print "drift velocity is",round(vd*10**3,4),"*10**-3 m/s"