#Question:
"""Finding the deflecting torque in Newton-metres for a PMMC instrument."""
#Variable Declaration:
I=15e-03 #Current flowing through the coil(in Amperes)
B=0.2 #Flux density in the air gap(in Tesla)
l=2e-02 #Length of the magnetic field(in m)
d=2.5e-02 #Mean width of the coil(in m)
r=d/2 #Radius of the coil(in cm)
n1=42 #Number of turns(lower limit)
n2=43 #Number of turns(upper limit)
#Calculations:
F1=I*B*l*n1
F2=I*B*l*n2
net_torque=(F1+F2)*r
#Result:
print "The deflecting torque is %e Nm." %(net_torque)
#Question:
"""Finding the shunt resistance for measuring a maximum current of 10 mA."""
#Variable Declaration:
Ifsd=10e-03 #Maximum current(in Amperes)
Im=100e-06 #Full-scale deflection current(in Amperes)
Rm=100 #Meter Resistance(in Ohms)
#Calculations:
Ish=Ifsd-Im
Rsh=(Im*Rm)/Ish
#Result:
print "The shunt resistance needed is %.6f Ohms." %(Rsh)
#Question:
"""Designing an universal shunt for a multi-range ammeter."""
#Variable Declaration:
Im=100e-06 #Full-scale deflection current(in Amperes)
Rm=100.0 #Internal resistance(in Ohms)
#Calculations:
"""For 1-mA range,the required shunt can be calculated as follows."""
Ifsd=1e-03
Rsh=(Im*Rm)/(Ifsd-Im)
Rm=900.0
R=100.0
"""(a)Range-switch at 1 mA:"""
Rm1=Rm
Ish1=(1e-03)-(0.1e-03)
Rsh1=(Rm1*Im)/(Ish1)
"""(b)Range-switch at 10 mA:"""
"""Rm2=Rm+R1"""
Ish2=(10e-03)-(0.1e-03)
"""Rsh2=R2+R3+R4+R5=R-R1=100-R1;"""
"""Rsh2=(Rm2*Im)/Ish2;"""
R1=(9900.0-900.0)/100.0
"""(c)Range-switch at 100 mA:"""
"""Rm3=Rm+R1+R2"""
Ish3=(100e-03)-(0.1e-03)
"""Rsh3=R3+R4+R5=R-R1-R2=100-90-R2=90-R2;"""
"""Rsh3=(Rm3*Im)/Ish3;"""
R2=(9990.0-990.0)/1000.0
"""(d)Range-switch at 500 mA:"""
"""Rm4=Rm+R1+R2+R3"""
Ish3=(500e-03)-(0.1e-03)
"""Rsh4=R4+R5=R-R1-R2-R3=100-90-9-R3=1-R3;"""
"""Rsh4=(Rm4*Im)/Ish4;"""
R3=(4999.0-999.0)/5000.0
"""(e)Range-switch at 1 A:"""
"""Rm5=Rm+R1+R2+R3+R4"""
Ish3=(1000e-03)-(0.1e-03)
"""Rsh5=R5=R-R1-R2-R3-R4=100-90-9-0.8-R4=0.2-R4;"""
"""Rsh5=(Rm5*Im)/Ish5;"""
R4=(1999.8-999.8)/10000.0
R5=R-R1-R2-R3-R4
#Result:
print "The resistor values are: "
print "R1=%.2f Ohms." %(R1)
print "R2=%.2f Ohms." %(R2)
print "R3=%.2f Ohms." %(R3)
print "R4=%.2f Ohms." %(R4)
print "R5=%.2f Ohms." %(R5)
#Question:
"""To convert a d'Arsonval meter movement into a voltmeter."""
#Variable Declaration:
Im=100e-06 #Current sensitivity(in Amperes)
Rm=100 #Resistance of the coil(in Ohms)
Vfsd=100 #Full-scale deflection of voltmeter(in Volts)
#Calculations:
Rs=(Vfsd/Im)-Rm
#Result:
print "To convert the d'Arsonval meter movement into a voltmeter of range 100V, we connect a resistor Rs in series."
print "Rs = %.3f kilo Ohms. " %(Rs/1000)
#Question:
"""Finding the multipiler resistance and the voltage mutiplyiing factor of a dc voltmeter."""
#Variable Declaration:
Im=50e-06 #Full-scale deflection current(in Amperes)
Rm=1e03 #Meter Resistance(in Ohms)
Vfsd=50 #Full-scale deflection of voltmeter(in Volts)
#Calculations:
Rs=(Vfsd/Im)-Rm
n=Vfsd/(Im*Rm)
#Result:
print "(a)The multiplier resistance needed is %.2f kilo Ohms." %(Rs/1000)
print "(b)The voltage multiplying factor is %d." %(round(n,0))
#Question:
"""Finding the reading and error in measurement of voltmeter."""
""" NOTE: All resistances expressed in kilo Ohms."""
#Variable Declaration:
range_A=50 #Range of voltmeter-A(in Volts)
range_B=50 #Range of voltmeter-B(in Volts)
sens_A=1000 #Sensitivity of voltmeter-A(in Ohm/Volts)
sens_B=20000 #Sensitivity of voltmeter-B(in Ohm/Volts)
#Calculations:
Vt=150.0*(50.0/(100.0+50.0))
R_i1=(range_A*sens_A)/1000.0
Req=1/((1/R_i1)+(1.0/50))
V1=(150.0)*(Req/(100+Req))
R_i2=(range_B*sens_B)/1000.0
Req=1/((1/R_i2)+(1.0/50))
V2=(150.0)*(Req/(Req+100))
err_A=((Vt-V1)/Vt)*100.0
err_B=((Vt-V2)/Vt)*100.0
#Result:
print "The reading of voltmeter-A is %.2f V\nThe reading of voltmeter-B is %.2f V." %(V1,V2)
print "\nThe error in the reading of voltmeter-A is %.2f percent." %(err_A)
print "The error in the reading of voltmeter-B is %.2f percent." %(err_B)
#Question:
"""Finding the deflection in an ammeter."""
from math import sin,asin,degrees,pow
#Variable Declaration:
I1=20.0 #Initial current(in Amperes)
I2=12.0 #Final current(in Amperes)
angle1=60 #Initial deflection(in degrees)
""" Given: Deflecting torque is directly proportional to the current."""
#Calculations:
"""For spring control: Controlling torque is directly proportional to deflection.
For steady state deflection, controlling torque=deflecting torque.
Therefore,deflection is directly proportional to current. """
angle2_a=(I2/I1)*angle1
"""For gravity control: Controlling torque is directly proportional to sine of the deflection angle.
For steady state deflection, controlling torque=deflecting torque.
Therefore,sine of the angle of deflection is directly proportional to the current. """
angle2_b=asin((I2/I1)*sin(radians(angle1)))
#Result:
print "(a)The deflection for a current of 12A when the instrument is spring controlled is %.2f degrees." %(angle2_a)
print "(b)The deflection for a current of 12A when the instrument is gravity controlled is %.2f degrees." %(degrees(angle2_b))
#Question:
"""Finding the deflection in degrees in a gravity-controlled instrument."""
from math import asin,degrees
#Variable Declaration:
W=0.005 #Controlling weight(in kilograms)
l=2.4e-02 #Distance of controlling weight from the axis(in metres)
torque=1.05e-04 #Deflecting torque(in kg-m)
#Calculations:
angle=asin(torque/(W*l))
#Result:
print "The deflection corresponding to a deflecting torque of 1.05e-04 kg-m is %.2f degrees." %(degrees(angle))
#Question:
"""Finding the deflection in an ammeter."""
from math import sin,asin,degrees,pow
#Variable Declaration:
I1=10.0 #Initial current(in Amperes)
I2=5.0 #Final current(in Amperes)
angle1=90 #Initial deflection(in degrees)
""" Given: Deflecting torque is directly proportional to square of the current."""
#Calculations:
"""For spring control: Controlling torque is directly proportional to deflection.
For steady state deflection, controlling torque=deflecting torque.
Therefore,deflection is directly proportional to square of the current. """
angle2_a=pow((I2/I1),2)*angle1
"""For gravity control: Controlling torque is directly proportional to sine of the deflection angle.
For steady state deflection, controlling torque=deflecting torque.
Therefore,sine of the angle of deflection is directly proportional to square of the current. """
angle2_b=asin((pow((I2/I1),2))*sin(radians(angle1)))
#Result:
print "(a)The deflection for a current of 5A when the instrument is spring controlled is %.2f degrees." %(angle2_a)
print "(b)The deflection for a current of 5A when the instrument is gravity controlled is %.2f degrees." %(degrees(angle2_b))
#Question:
"""Finding the current required to produce a deflection of 60 degrees in a moving coil instrument."""
#Variable Declaration:
w=4e-02 #Width of the coil(in metres)
l=5e-02 #Length of the coil(in metres)
N=80.0 #Number of turns in the coil
torque_control=0.5e-07 #Controlling torque per degree deflection of the coil(in Nm)
B=0.1 #Magnetic flux density in the air gap(in Wb per square-metre)
#Calculations:
A=w*l
torque_c=torque_control*60.0
I=torque_c/(B*N*A)
#Result:
print "The current required to give a deflection of 60 degrees is %e A." %(I)