#Question:
"""Finding the magnetic field strength and total flux passing through a coil."""
from math import pi
#Variable Declaration:
N=200 #Number of turns in the coil
l=0.60 #Length(Circumference) of the wooden ring(in metres)
A=500e-06 #Cross-sectional area of the ring(in square-metres)
I=4 #Current through the coil(in Amperes)
#Calculations:
H=(N*I)/l
rel_per=1
per=(4*pi)*(1e-07)
B=per*rel_per*H
flux=B*A
#Result:
print "(a)The magnetic field strength is %.2f A/m." %(H)
print "(b)The flux density is %.2f micro T." %(B*1000000)
print "(c)The total flux is %.5f micro Wb." %(flux*1000000)
#Question:
"""Finding the magnetomotive force(mmf) required to produce flux."""
from math import pi
#Variable Declaration:
flux=0.015 #Flux across the air-gap(in Webers)
l=2.5e-03 #Length of the air-fap(in metres)
A=200e-04 #Effective area of the air-gap(in square-metres)
#Calculations:
B=flux/A
abs_per=(4*pi)*(1e-07)
H=B/abs_per
mmf=H*l
#Result:
print "The magneto motive force(mmf) required is %.2f At." %(mmf)
#Question:
"""Finding the reluctance of a mild-steel ring."""
from math import pi
#Variable Declaration:
N=200 #Number of turns in the coil
abs_per=(4*pi)*(1e-07) #Absolute permeability of free space
rel_per=380 #Relative permeability of mild-steel
l=400e-03 #Length(Circumference) of the mild-steel ring(in metres)
A=500e-06 #Cross-sectional area of the mild-steel ring(in square-metres)
flux=800e-06 #Flux in the ring(in Webers)
#Calculations:
Rel=l/(abs_per*rel_per*A)
mmf=flux*Rel
I=mmf/N
#Result:
print "(a)The reluctance of the ring is %6e A/Wb." %(Rel)
print "(b)The magnetising current is %.2f A." %(I)
#Question:
"""Finding the current in the coil to produce a flux density of 0.9 T in the air gap."""
from math import pi
#Variable Declaration:
B=0.90 #Flux Density in the air gap(in Tesla)
N=4000 #Number of turns in the core
l_core=220e-03 #Length of the core(in metres)
A_core=50e-06 #Cross-sectional area of the core(in square-metres)
H_core=820 #Magnetic field intensity of the core(in Ampere per metre)
l_gap=1e-03 #Length of the air-gap(in metres)
A_gap=50e-06 #Cross-sectional area of the air gap(in square-metres)
#Calculations:
mmf_core=H_core*l_core
abs_per=(4*pi*(1e-07))
H_gap=B/abs_per
mmf_air_gap=H_gap*l_gap
Total_mmf=mmf_core+mmf_air_gap
I=Total_mmf/N
#Result:
print "The magnetisation current is %.5f A." %(I)
#Question:
"""Finding the magnetising current required to produce a flux across the air gap."""
from math import pi
#Variable Declaration:
w=40e-03 #Width of the core(in metres)
d=50e-03 #Depth of the core(in metres)
lg=2.0e-03 #Length of the air gap(in metres)
Ag=2500e-06 #Area of the air gap(in square metres)
N=800 #Number of turns in the coil
flux=2.50e-03 #Flux across the air gap(in Webers)
lf=1.2 #Leakage Factor
abs_per=(4*pi)*(1e-07) #Absolute permeability of free space(Henry per metre)
lc=600e-03 #Length of the core(in metres)
#Calculations:
Ac=w*d
Bg=flux/Ag
Hg=Bg/abs_per
mmf_g=Hg*lg
eff_Ac=0.92*Ac
flux_c=flux*lf
Bc=flux_c/eff_Ac
Hc=4000.0
mmf_c=Hc*lc
mmf=mmf_c+mmf_g
I=mmf/N
#Result:
print "The magnetising current required to produce a flux of 0.0025 Wb across the air gap is %.2f A." %(I)
#Question:
"""Finding the current in the coil."""
#Variable Declaration:
lA=0.3 #Length of silicon steel material(in metres)
lB=0.2 #Length of low-carbon mild steel material(in metres)
lC=0.1 #Length of cast iron material(in metres)
N=100 #Number of turns in the exciting coil
A=0.001 #Cross-sectional area(in square-metres)
flux=600e-06 #Flux in the coil(in Webers)
abs_per=(4*pi)*(1e-07)#Absolute permeability of free space(in Henry per metre)
#Calculations:
B=flux/A
B_A=B
B_C=B
B_C=B
"""From magnetisation characteristics of ferromagnetic materials,"""
H_A=20.0
H_B=700.0
H_C=2500.0
"""According to Kirchoff's magnetomotive force law(KML),the total mmf required, tot_mmf= mmf_A+mmf_B+mmf_C."""
tot_mmf=(H_A*lA)+(H_B*lB)+(H_C*lC)
I=tot_mmf/N
rel_A=B/(abs_per*H_A)
rel_B=B/(abs_per*H_B)
rel_C=B/(abs_per*H_C)
R_A=(H_A*lA)/flux
R_B=(H_B*lB)/flux
R_C=(H_C*lC)/flux
#Result:
print "(a)The mmf for setting up a flux of 600 micro Weber is %.2f At." %(tot_mmf)
print "(b)The current in the coil is %.2f A." %(I)
print "(c)The relative permeability of:\n Material A: %.2f\n Material B: %.2f\n Material C: %.2f.\n" %(rel_A,rel_B,rel_C)
print " The reluctances are :\n R_A=%.2f At/Wb \n R_B=%.2f At/Wb \n R_C=%.2f At/Wb." %(R_A,R_B,R_C)
#Question:
"""Finding the current in the exciting coil."""
from math import pi
#Variable Declaration:
N=300 #Number of the turns in the exciting coil
flux=600e-06 #Flux in the air gap(in Webers)
lg=1e-03 #Length of the air gap(in metres)
lc=40e-02 #Mean length of the core(in metres)
A=4e-04 #Cross sectional area of the core(in square metres)
abs_per=(4*pi)*1e-07 #Absolute permeability of free space(in Henry per metre)
#Calculations:
B=flux/A
Hg=B/abs_per
mmf_g=Hg*lg
mmf_c=3000*lc
mmf=mmf_g+mmf_c
I=mmf/N
#Result:
print "The current in the exciting coil to set up a flux of 600 micro Weber in the air gap is %.2f A." %(I)
#Question:
"""Finding the current in the exciting coil."""
#Variable Declaration:
l1=10e-02 #Length of first side of the magnetic circuit(in metres)
l2=18e-02 #Length of second side of the magnetic circuit(in metres)
l3=18e-02 #Length of third side of the magnetic circuit(in metres)
A1=6.25e-04 #Cross sectional area of l1 path(in square-metre)
A2=3.00e-04 #Cross sectional area of l2 path(in square-metre)
A3=3.00e-04 #Cross sectional area of l3 path(in square-metre)
lg=2e-03 #Length of air gap(in metres)
rel_per=800.0 #Relative permeability of core material
N=600 #Number of turns
flux=100e-06 #Flux in the air gap(in Webers)
abs_per=(4*pi)*1e-07 #Absolute permeability of free space(in Farad per metre)
#Calculations:
Bg=flux/A1
Hg=Bg/abs_per
mmf_g=Hg*lg
B1=Bg
H1=B1/(rel_per*abs_per)
mmf_1=H1*l1
flux2=flux/2.0
B2=flux2/A2
H2=B2/(rel_per*abs_per)
mmf_2=H2*l2
tot_mmf=mmf_g+mmf_1+mmf_2
I=tot_mmf/N
#Result:
print "The current in the 600 turn exciting coil is %.3f A." %(I)
#Question:
"""Finding the value of exciting current."""
#Variable Declaration:
A_B=0.01 #Area of cross section of limb B(in square metre)
A_C=0.02 #Area of cross section of limb C(in square metre)
l_B=1e-03 #Length of air gap in limb B(in metres)
l_C=2e-03 #Length of air gap in limb C(in metres)
flux_B=1.5e-03 #Flux in limb B(in Webers)
N=500 #Number of turns in the coil
abs_per=(4*pi)*(1e-07)#Absolute permeability of free space(in Henry per metre)
#Calculations:
"""The mmf across parallel paths must be same.
(R_B*flux_B)=(R_C*flux_C);"""
flux_C=flux_B*(l_B/l_C)*(A_C/A_B)
flux=flux_B+flux_C
R_B=l_B/(abs_per*A_B)
R_C=l_C/(abs_per*A_C)
R_net=1.0/((1.0/R_B)+(1.0/R_C))
I=(flux*R_net)/N
#Result:
print "The flux in limb A is %e Wb." %(flux)
print "The current in the exciting coil is %e A." %(I)
#Question:
"""Finding the ampere turns required to produce a flux."""
from math import pi
#Variable Declaration:
abs_per=(4*pi)*(1e-07) #Absolute permeability of free space(in Henry per metre)
D=21e-02 #Mean diameter of the ring(in metres)
A=10e-04 #Cross sectional area(in square metre)
flux=0.8e-03 #Flux to be produced(in Webers)
lg=0.4e-03 #Length of the air gap(in metres)
rel_i=166.0 #Relative permeability of iron
rel_s=800.0 #Relative permeability of steel
#Calculations:
B=flux/A
li=(pi*D)/2.0
ls=(pi*D)/2.0
mmf_g=(B/abs_per)*lg
mmf_i=(B/(abs_per*rel_i))*li
mmf_s=(B/(abs_per*rel_s))*ls
mmf=mmf_g+mmf_i+mmf_s
#Result:
print "The total ampere turns required is %.2f At." %(mmf)
#Question:
"""Finding the ampere turns of the coil wound on the central limb."""
#Variable Declaration:
flux=1e-03 #Flux in the central limb(in Webers)
Ac=8e-04 #Area of the central limb(in square metres)
As=5e-04 #Area of each side limb(in square metres)
l=0.15 #Length of the central limb(in metres)
lg=0.001 #Length of the air gap(in metres)
abs_per=(4*pi)*1e-07 #Absolute permeability of free space(in Henry per metre)
l1=0.34 #Length of the part ABCD(in metres)
#Calculations:
B=flux/Ac
"""Corresponding to this value of B, H is 500 At/m from the table."""
mmf_DG=500*l
Hg=1.25/abs_per
mmf_g=Hg*lg
B1=(flux/2.0)/As
"""Corresponding to this value of B, H is 200 At/m from the table."""
mmf_1=200*l1
mmf_tot=mmf_DG+mmf_g+mmf_1
#Result:
print "The required ampere turns of the coil wound on the central limb is %.2f At." %(mmf_tot)