#importing modules
import math
from __future__ import division
#Variable declaration
m=1.67*10**-27; #mass of proton(kg)
h=6.625*10**-34; #planks constant(Js)
v=3967; #velocity of proton(m/s)
#Calculations
lamda=h/(m*v); #de-Broglie wavelength of proton(m)
#Result
print "de-Broglie wavelength of proton is",int(lamda*10**10),"angstrom"
#importing modules
import math
from __future__ import division
#Variable declaration
m=9.11*10**-31; #mass of electron(kg)
h=6.625*10**-34; #planks constant(Js)
lamda=5*10**-10; #de-Broglie wavelength(m)
e=1.6*10**-19; #charge(coulomb)
#Calculations
E=h**2/(2*m*lamda**2*e); #kinetic energy of electron(eV)
#Result
print "kinetic energy of electron is",int(E),"eV"
#importing modules
import math
from __future__ import division
#Variable declaration
c=3*10**8; #velocity of light(m/sec)
m=1.67*10**-27; #mass of proton(kg)
h=6.625*10**-34; #planks constant(Js)
#Calculations
v=c/30; #velocity of proton(m/sec)
lamda=h/(m*v); #de-Broglie wavelength of proton(m)
#Result
print "de-Broglie wavelength of proton is",round(lamda*10**14,2),"*10**-6 angstrom"
#importing modules
import math
from __future__ import division
#Variable declaration
V=150; #potential difference(V)
#Calculations
lamda=12.26/math.sqrt(V); #de-Broglie wavelength of electron(angstrom)
#Result
print "de-Broglie wavelength of electron is",int(lamda),"angstrom"
#importing modules
import math
from __future__ import division
#Variable declaration
V=100; #voltage(eV)
m=9.1*10**-31; #mass of proton(kg)
h=6.625*10**-34; #planks constant(Js)
e=1.6*10**-19; #charge(coulomb)
#Calculations
lamda=h*10**10/math.sqrt(2*m*e*V); #de-Broglie wavelength(angstrom)
#Result
print "de-Broglie wavelength is",round(lamda,2),"angstrom"
#importing modules
import math
from __future__ import division
#Variable declaration
m=1.67*10**-27; #mass of proton(kg)
h=6.625*10**-34; #planks constant(Js)
v=4000; #velocity of proton(m/s)
#Calculations
lamda=h*10**10/(m*v); #de-Broglie wavelength of neutron(angstrom)
#Result
print "de-Broglie wavelength of neutron is",round(lamda,2),"angstrom"
#importing modules
import math
from __future__ import division
#Variable declaration
mp=1.67*10**-27; #mass of proton(kg)
me=9.11*10**-31; #mass of electron(kg)
#Calculations
r=mp/me; #ratio of kinetic energies of electron and proton
#Result
print "ratio of kinetic energies of electron and proton is",int(r)
#importing modules
import math
from __future__ import division
#Variable declaration
m=9.1*10**-31; #mass of proton(kg)
e=1.6*10**-19; #charge(coulomb)
c=3*10**8; #velocity of light(m/sec)
E=1000; #energy(eV)
#Calculations
r=math.sqrt(2*m/(e*E))*c; #ratio of wavelengths
#Result
print "ratio of wavelengths is",int(round(r))
#importing modules
import math
from __future__ import division
#Variable declaration
m=9.1*10**-31; #mass of electron(kg)
c=3*10**8; #velocity of light(m/sec)
h=6.6*10**-34; #planks constant(Js)
lamda=1.54*10**-10; #wavelength of X-ray(m)
wf=1*10**-15; #work function(J)
#Calculations
E=h*c/lamda; #energy of X-ray(J)
Ee=E-wf; #energy of electron emitted(J)
lamda=h/math.sqrt(2*m*Ee); #wavelength of electron(m)
#Result
print "wavelength of electron is",round(lamda*10**10,3),"angstrom"
#importing modules
import math
from __future__ import division
#Variable declaration
m=1.67*10**-27; #mass of proton(kg)
h=6.6*10**-34; #planks constant(Js)
T=400; #temperature(K)
k=1.38*10**-23; #boltzmann constant
#Calculations
lamda=h*10**10/math.sqrt(2*m*k*T); #de broglie wavelength of proton(angstrom)
#Result
print "de broglie wavelength of proton is",round(lamda,3),"angstrom"
#importing modules
import math
from __future__ import division
#Variable declaration
m=1.673*10**-27; #mass of proton(kg)
m0=9.1*10**-31; #mass of electron(kg)
c=3*10**8; #velocity of light(m/sec)
h=6.63*10**-34; #planks constant(Js)
ke=1000; #kinetic energy
#Calculations
re=m0*c**2; #rest energy of electron(J)
Ep=ke*re; #energy of proton(J)
v=math.sqrt(2*Ep/m); #velocity of proton(m/s)
lamda=h*10**10/(m*v); #debroglie wavelength of proton(angstrom)
#Result
print "rest energy of electron is",re,"J"
print "energy of proton is",Ep,"J"
print "velocity of proton is",v,"m/s"
print "wavelength of electron is",round(lamda*10**5,2),"*10**-5 angstrom"
print "answers given in the book are wrong"
#importing modules
import math
from __future__ import division
#Variable declaration
m=9.1*10**-31; #mass of electron(kg)
h=6.625*10**-34; #planks constant(Js)
lamda=0.16*10**-10; #debroglie wavelength of electron(m)
e=1.6*10**-19; #charge(coulomb)
#Calculations
v=h/(lamda*m); #velocity of electron(m/s)
KE=m*v**2/(2*e); #kinetic energy(eV)
#Result
print "velocity of electron is",round(v*10**-7,2),"*10**7 m/s"
print "kinetic energy is",int(KE),"eV"
#importing modules
import math
from __future__ import division
#Variable declaration
m=1.67*10**-27; #mass of proton(kg)
h=6.62*10**-34; #planks constant(Js)
T=300; #temperature(K)
k=1.38*10**-23; #boltzmann constant
#Calculations
d=h*10**10/math.sqrt(2*m*k*T); #interplanar spacing of crystal(angstrom)
#Result
print "interplanar spacing of crystal is",round(d,2),"angstrom"
print "answer given in the book is wrong"
#importing modules
import math
from __future__ import division
#Variable declaration
lamda=0.5; #wavelength(angstrom)
#Calculations
V=(12.3/lamda)**2; #potential(volts)
#Result
print "potential is",V,"volts"
#importing modules
import math
from __future__ import division
#Variable declaration
lamda=1*10**-10; #wavelength(m)
h=6.63*10**-34; #planks constant(Js)
c=3*10**8; #velocity of light(m/sec)
#Calculations
p=h/lamda; #momentum(J-sec/m)
E=p*c; #energy of gama ray photon(J)
#Result
print "energy of gama ray photon is",E*10**16,"*10**-16 J"
#importing modules
import math
from __future__ import division
#Variable declaration
h=6.6*10**-34; #planks constant(Js)
m=9*10**-31; #mass of electron(kg)
r=0.53*10**-10; #radius of orbit(m)
#Calculations
v=h/(2*math.pi*r*m); #velocity of electron(m/sec)
#Result
print "velocity of electron is",round(v*10**-6,1),"*10**6 m/sec"