n2=40.0 #Assigning values to parameters
n1=600.0
kva=50.0
e1=2200.0
e2=(e1*n2)/n1
i1=kva*1000/e1
i2=kva*1000/e2
print"The primary full load current is",round(i1,2),"A"
print"The secondary full load current is",round(i2,2),"A"
print"The secondary voltage at node is",round(e2,2),"Volts"
e1=3200 #Assigning values to parameters
f=50
bm=1.2
e2=400
n2=111
kva=80
n1=e1*n2/e2
i2=kva*1000/e2
a=e2/(4.44*f*n2*bm)
print"number of turns on primary windings is n1=",round(n1,2)
print"The secondary full load current is i2=",round(i2,2),"A"
print"The cross-sectional area is a=",round(a,4),"meter square"
e1=6000 #Assigning values to parameters
f=50
e2=250
fm=0.06
n1=e1/(4.44*f*fm)
n2=e2/(4.44*f*fm)
print"number of turns on primary windings is",round(n1,2),"turns"
print"number of turns on secondary windings is",round(n2,3),"turns"
f=50.0
n2=50.0 #Assigning values to parameters
n1=500.0
kva=25.0
e1=3000.0
k=n2/n1
i1=kva*1000/e1
i2=i1/k
e2=k*e1
fm=e1/(4.44*f*n1)
print"The primary full load current is",round(i1,2),"A"
print"The secondary full load current is",round(i2,2),"A"
print"The secondary emf is",round(e2,2),"Volts"
print"The maximum flux is",round(fm,3),"Wb"
e1=230.0 #Assigning values to parameters
v1=e1
i0=5.0
t=math.acos(0.25)
n1=200.0
f=50.0
fm=e1/(4.44*f*n1)
w1=v1*i0*cos(t)
iu=i0*sin(t)
print"The maximum flux is",round(fm*1000,3),"mWb"
print"The core loss is",round(w1,2),"Watts"
print"The maximum current is",round(iu,2),"A"
k=0.25 #Assigning values to parameters
sr=50
pr=sr/(k*k)
print"The Secondary resistance is",round(pr,2),"ohms"
wf=2500 #Assigning values to parameters
w6=0.6*0.6*wf
w5=0.5*0.5*wf
print"The copper loss at 60% full-load condition is",round(w6,2),"Watts"
print"The copper loss at 50% full-load conditionis",round(w5,2),"Watts"
w7=1200 #Assigning values to parameters
wf=w7/(0.75*0.75)
w5=0.5*0.5*wf
print"The copper loss at 50% full-load condition is",round(w5,2),"Watts"
V=230.0; #Assigning values to parameters
VA=350.0;
loss=110.0;
I0=VA/V;
pf=loss/VA;
Iw=I0*pf;
Iu=sqrt(I0**2-Iw**2);
print"Iron loss component of no load current",round(Iw,3),"A"
print"Magnatizing component of no load current",round(Iu,2),"A"
print"no load power factor",round(pf,3)
r1=0.2 #Assigning values to parameters
x1=0.75
r2=0.05
x2=0.2
pf=0.8
e2=125.0
e1=250.0
t=math.acos(0.8)
k=e2/e1
kva=5.0
i2=kva*1000/e2
r02=r2+k*k*r1
x02=x2+k*k*x1
pr1=(i2*r02*cos(t)-i2*x02*sin(t))*100/e2
v2=e2-(e2*pr1/100)
print"The percentage regulation at full load 0.8 pf leading is",round(pr1,2)
print"The secondary terminal voltage is",round(v2,2),"Volts"
r1=2.0 #Assigning values to parameters
r2=0.02
wi=412.0
pf=0.8
x=1.0
kva=50.0
e1=2300.0
e2=230.0
i2=kva*1000/e2
i1=kva*1000/e1
wcf=(i1*i1*r1)+(i2*i2*r2)
n1=x*kva*pf*100/((x*kva*pf)+(wi*0.001)+(x*x*wcf*0.001))
x=0.5
n2=x*kva*pf*100/((x*kva*pf)+(wi*0.001)+(x*x*wcf*0.001))
print"Efficiency at full node 0.8pf is",round(n1,2),"%"
print"Efficiency at half full node 0.8pf is",round(n2,2),"%"
x=1.0 #Assigning values to parameters
kva=25.0
pf=0.8
wi=0.35
wcf=0.4
n1=x*kva*pf*100/((x*kva*pf)+(wi*0.001)+(x*x*wcf*0.001))
kva1=kva*(sqrt(wi/wcf))
nm=kva1*pf*100/((kva1*pf)+2*wi)
print"Load in KVA is",round(kva1,3)
print"Maximum Efficency is",round(nm,2),"%"
x=1.0 #Assigning values to parameters
kva=40.0
pf=0.8
wi=450.0
wcf=850.0
n1=x*kva*pf*100/((x*kva*pf)+(wi*0.001)+(x*x*wcf*0.001))
x=sqrt(wi/wcf)
n2=x*kva*pf*100/((x*kva*pf)+(2*wi*0.001))
kva1=kva*sqrt(wi/wcf)
print"Efficiency at full node 0.8pf is",round(x,4)
print"Maximum Efficency is",round(n2,2)
print"Load in KVA at which maximum occurs is",round(kva1,2)
e1=2000.0 #Assigning values to parameters
e2=200.0
r1=2.3
x1=4.2
r2=0.025
x2=0.04
kva=20.0
i1=kva*1000/e1
i2=kva*1000/e2
k=e2/e1
r01=r1+r2/(k*k)
x01=x1+x2/(k*k)
r02=r2+k*k*r1
x02=x2+k*k*x1
print"The equivalent primary resistance is",round(r01,2),"ohms"
print"The equivalent primary reactance is",round(x01,2),"ohms"
print"The equivalent Secondary resistance is",round(r02,3),"ohms"
print"The equivalent Secondary reactance is",round(x02,3),"ohms"
x=1.0 #Assigning values to parameters
kva=20.0
pf=0.8
wi=450.0
wcf=900.0
n1=x*kva*pf*100/((x*kva*pf)+(wi*0.001)+(x*x*wcf*0.001))
x=sqrt(wi/wcf)
n2=x*kva*pf*100/((x*kva*pf)+(2*wi*0.001))
print"Efficiency at full node 0.8pf is",round(n1,2),"%"
print"Maximum Efficency is",round(n2,2),"%"
print"Load at which maximum occurs is",round(x,3)
nm=98.0 #Assigning values to parameters
x=0.5
kva=200.0
pf=1.0
wi=1000*((x*kva*pf*100/nm)/2-(x*kva*pf)/2)
wcu=wi
wcf=wcu/(0.5*0.5)
n1=(x*kva*pf*100)/((x*kva*pf)+(wi*0.001)+(x*x*wcf*0.001))
x=0.75
n2=(x*kva*pf*100)/((x*kva*pf)+(wi*0.001)+(x*x*wcf*0.001))
print"The core loss is",round(wi/1000,4),"kWatts"
print"Efficiency at full node 0.8pf is",round(n1,2)
print"Efficiency at 75% full node 0.8pf is",round(n2,2)
r1=0.3 #Assigning values to parameters
r2=0.01
x1=1.1
x2=0.035
kva=100
v1=2200
e1=v1
n1=400.0
n2=80.0
k=n2/n1
r01=r1+r2/(k*k)
x01=x1+x2/(k*k)
z01=sqrt(r01*r01+x01*x01)
e2=k*e1
i2=kva*1000/e2
r02=k*k*r01
x02=k*k*x01
pr1=(i2*r02*cos(t)-i2*x02*sin(t))*100/e2
v2=e2-(e2*pr1/100)
print"The equivalent primary resistance is z01=",round(z01,2),"ohms"
print"The percentage voltage regulation at full load 0.8 pf leading is x02=",round(x02,3),"ohms"
print"The secondary terminal voltage is v2=",round(v2,2),"volts"
E2=20.0; #Assigning values to parameters
E1=1000.0;
kva=5.0;
I2=kva*1000/E2;
K=E2/E1;
R01=4.4
R02=K*K*R01;
X01=8.98
X02=K*K*X01;
pf=0.8
percentreg=(I2*R02*pf+I2*X02*sqrt(1-pf*pf))*100/E2;
print"Percentage maximum regulation is=",round(percentreg,2)
wi=90
I1=kva*1000/E1
Wcf=I1*I1*R01
kvam=kva*sqrt(wi/Wcf)
print"kva at maximum Efficency is kvam=",round(kvam,2)
v1=200.0 #Assigning values to parameters
i0=0.7
w=70.0
k=400/200
t=math.acos(w/(v1*i0))
iw=i0*cos(t)
iu=i0*sin(t)
r0=v1/iw
x0=v1/iu
vsc=15.0
i2=10.0
w=85.0
r02=w/(i2*i2)
z02=vsc/i2
x02=sqrt(z02*z02-r02*r02)
r01=r02/(k*k)
x01=x02/(k*k)
e2=400.0
i2=5*1000/(0.8*e2)
v2=e2-i2*r02*cos(t)-i2*x02*sin(t)
print"The secondary Voltage is v2=",round(v2,2),"volts"
#the answer of v2 in the book is wrong,because in the book ,the values of cos(t) & sin(t) are wrong.
wi=1000.0 #Assigning values to parameters
kva=50.0
e1=2200.0
ifl=kva*1000/e1
x=1.0
pf=0.8
wcf=(ifl/20)*(ifl/20)*500
n1=x*kva*pf*100/((x*kva*pf)+(wi*0.001)+(x*x*wcf*0.001))
x=sqrt(wi/wcf)
n2=x*kva*pf*100/((x*kva*pf)+(2*wi*0.001))
print"Efficiency at full node 0.8pf is n1=",round(n1,3)
print"Maximum Efficency is n2=",round(n2,2)
print"Load at which maximum occurs is x=",round(x,2)
kva=5.0 #Assigning values to parameters
e2=400.0
r02=0.85
x02=1.236
i2f=kva*1000/e2
t=math.acos(0.8)
pr1=(i2f*r02*cos(t)+i2f*x02*sin(t))*100/e2
pr2=(i2f*r02*cos(t)-i2f*x02*sin(t))*100/e2
print"The percentage regulation at full load 0.8 pf lagging is",round(pr1,2)
print"The percentage regulation at full load 0.8 pf leading is",round(pr2,2)
cl=(10.0/12)*(10.0/12)*100 #Assigning values to parameters
op=500*10*0.8
il=80.0
eff=op*100/(op+il+cl)
print"The efficiency is eff=",round(eff,2)
kw=15 #Assigning values to parameters
t=math.acos(0.8)
kva=kw/cos(t)
x=kva/25
wcf=500
cl1=0.75*0.75*wcf
kw=20
t=math.acos(0.9)
kva=kw/cos(t)
x=kva/25
cl2=x*x*500
kw=10
t=math.acos(0.9)
kva=kw/cos(t)
x=kva/25
cl3=x*x*500
tec=cl1*6+cl2*10+cl3*4
tei=400*24
eo=330000
n=eo*100/(eo+tei+tec)
print"The efficiency is n=",round(n,2),"%"
kw=400.0 #Assigning values to parameters
pf=0.8
kva=kw/pf
cl1=4.5
kw=300.0
pf=0.75
kva=kw/pf
cl2=(kva/500)*(kva/500)*4.5
kw=100.0
pf=0.8
kva=kw/pf
cl3=(kva/500)*(kva/500)*4.5
cl4=0
tec=cl1*6+cl2*10+cl3*4+cl4*4
tei=84.0
eo=5800.0
n=eo*100/(eo+tei+tec)
print"The efficiency is n=",round(n,2),"%"
nm=0.98 #Assigning values to parameters
kva=15.0
x=1.0
pf=1.0
wi=((x*kva*pf/nm)/2-(x*kva*pf)/2)
wcu=wi
kw=2.0
pf=0.5
kva=kw/pf
cl1=(kva/15)*(kva/15)*wi
kw=12.0
pf=0.8
kva=kw/pf
cl2=0.153
kw=18.0
pf=0.9
kva=kw/pf
cl3=(kva/15)*(kva/15)*wi
tec=cl1*12+cl2*6+cl3*6
tei=3.672
eo=204.0
n=eo*100/(eo+tei+tec)
print"The efficiency is n=",round(n,2)
cl1=1.5 #Assigning values to parameters
cl2=0.5*0.5*cl1
tec=cl1*3+cl2*4
tei=36
eo=500
n=eo*100/(eo+tei+tec)
print"The efficiency is n=",round(n,2)