from __future__ import division
import math
#given data :
E_max=500;# emf in volts
thita=30;# in degree
#calculations:
e=E_max*math.sin(thita*math.pi/180);
#Results
print "instantaneous value,e(v) = ",e
from __future__ import division
import math
#given data :
I_max=1.414;# maximum value of current in A
#calculations:
I_rms=I_max*0.707;
#Results
print "rms value of current,I_rms(A) = ",round(I_rms)
from __future__ import division
import math
#given data :
f=50;# frequency in Hz
L=0.2;# inductance in H
V=220;# voltage in volts
#calculations:
XL=2*math.pi*f*L# in ohm
Z=XL;
I=V/Z;
#Results
print "current drawn,I(A) = ",round(I,2)
from __future__ import division
import math
#given data :
f=50;# frequency in Hz
C=100*10**-6# capacitor in Farad
V=210;# voltage in volts
#calculations:
XC=(1/(2*math.pi*f*C));
Z=XC;
I=V/Z;
#Results
print "current flowing,I(A) = ",round(I,2)
from __future__ import division
import math
#given data :
f=50;# frequency in Hz
L=0.4;# inductance in H
V=220;# voltage in volts
f1=25;# frequency is halved
f2=100;# frequency is doubled
#calculations:
XL=2*math.pi*f*L;
I=V/XL;
XL1=2*math.pi*f1*L;
I1=V/XL1;
XL2=2*math.pi*f2*L;
I2=V/XL2;
#Results
print "current flowing,I(A) = ",round(I,2)
print "(a)current when frequency is halved,I(A) = ",round(I1,2)
print "current when frequency is doubled,I(A) = ",round(I2,3)
from __future__ import division
import math
#given data :
f=50;# frequency in Hz
C=28*10**-6# capacitor in Farad
V=250;# voltage in volts
f1=25# when frequency is halved
f2=100# when frequency is doubled
#calculations:
XC=1/(2*math.pi*f*C);
I=V/XC;
XC1=1/(2*math.pi*f1*C);
I1=V/XC1;
XC2=1/(2*math.pi*f2*C);
I2=V/XC2;
#Results
print "current flowing,I(A) = ",round(I,1)
print "current flowing when frequency is halved,I(A) = ",round(I1,1)
print "current flowing when frequency is doubled ,I(A) =",round(I2,1)
from __future__ import division
import math
#given data:
R=40 #in ohms
L=0.07#IN HENRY
V=223#IN VOLTS
F=50 # IN HERTS
#calculations:
Xl=2*math.pi*F*L# inductive reactance in ohms
Z=(R**2+Xl**2)**0.5#IMPEDENCE IN OHMS
I=V/Z;#in amperes
csp=R/Z#pf
phi=math.acos(csp)#angle of phase differnce in degree
def decdeg2dms(dd):
mnt,sec = divmod(dd*3600,60)
deg,mnt = divmod(mnt,60)
return deg,mnt,sec
phiAct = decdeg2dms(phi*180/math.pi)
#Results
print "inductive reactance in ohms is",round(Xl)
print "impedence in ohms is",round(Z,2)
print "current in amperes is",round(I,1)
print "angle of phase difference is ",phiAct[0],"Degrees and ",phiAct[1],"minutes"
from __future__ import division
import math
#given data:
V=200#in volts
I=2.5# in amperes
Vo=250# in volts
f=50 # in hertz
#calculations:
R=V/I# in ohms
Z=Vo/I# in ohms
Xl=(Z**2-R**2)**0.5#inductive reactance in ohms
L=(Xl/(2*math.pi*f))#inductance in henry
pf=R/Z#power factor
phi=math.acos(pf)#angle of phase differnce in degree
def decdeg2dms(dd):
mnt,sec = divmod(dd*3600,60)
deg,mnt = divmod(mnt,60)
return deg,mnt,sec
phiAct = decdeg2dms(phi*180/math.pi)
#Results
print "inductance in henry is",round(L,4)
print "angle of phase difference is ",phiAct[0],"Degrees and ",phiAct[1],"minutes"
from __future__ import division
import math
#given data:
W=100#in watts
V=110#in volts
Vc=220#in volts
f=50 #in hertz
#calculations:
I=W/V# in amperes
R=V/I#in ohms
Z=Vc/I# in ohms
Xc=math.sqrt(Z**2-R**2)# IN OHMS
C=(1/(2*math.pi*f*Xc))# in farads
#Results
print "capacitance in micro farads is",round(C*10**6,2)
from __future__ import division
import math
#given data:
R=5.94#in ohms
L=0.35#IN HENRY
C=35 # in micro farads
V=220#IN VOLTS
F=50 # IN HERTS
#calculations:
Xc=(1/(2*math.pi*F*C*10**-6))# capacitive reactance in ohms
Xl=2*math.pi*F*L# inductive reactance in ohms
Z=math.sqrt(R**2+(Xl-Xc)**2)# impedence in ohms
I=V/round(Z)# in amperes
pf=R/round(Z)# power factor
Zc=math.sqrt(R**2+Xl**2)#impedence of the coil
Vl=I*Zc#voltage drop across the coil
Vc=I*Xc#voltage drop across the capacitor
W=I**2*R#total power taken in watts
#Results
print "(a)impedence in ohms is",round(Z)
print "(b)current in amperes is",I
print "(c)angle of phase diffence between voltage and current is",pf
print "(d)voltage across the coil in volts is",round(Vl,1)
print "(e)voltage across capacitor in volts is",round(Vc,1)
print "(f)total power taken in watts is",round(W,1)
from __future__ import division
import math
#given data:
r1=6 #in ohms
r2=3.95#in ohms
R=r1+r2#in ohms
L1=0.21#IN HENRY
L2=0.14#in henry
C1=30# in micro farads
C2=60#in micro farads
V=220#IN VOLTS
F=50 # IN HERTS
#calculations:
Xc1=(1/(2*math.pi*F*C1*10**-6))# capacitive reactance in ohms
Xc2=(1/(2*math.pi*F*C2*10**-6))# capacitive reactance in ohms
Xc=Xc1+Xc2#IN OHMS
Xl1=2*math.pi*F*L1# inductive reactance in ohms
Xl2=2*math.pi*F*L2# inductive reactance in ohms
Xl=Xl1+Xl2#in ohms
Z=math.sqrt(R**2+(Xl-Xc)**2)# impedence in ohms
I=V/Z#
pf=R/Z# leading power factor
#Results
print "(a)impedence in ohms is",round(Z)
print "(b)current in amperes is",round(I)
print "(c)power factor (leading) is",round(pf,3)
from __future__ import division
import math
#given data:
V=200# in volts
L=0.04# in henry
C=100#in micro fards
f=50 # hertz
Z1=10#ohms
R1=10# in ohms
X1=0 # in ohms
R2=5 # in ohms
R3=15# in ohms
#calculations:
Xl=2*math.pi*f*L#inductive reactance in ohms
Xc=(1/(2*math.pi*f*C*10**-6))#CAPACITIVE REACTANCE IN OHMS
Z2=math.sqrt(R2**2+Xl**2)#in ohms
X2=Xl#
Z3=math.sqrt(R3**2+Xc**2)# IN OHMS
X3=Xc#
g1=R1/(Z1)**2# conductance of branch 1 in mho
b1=X1/(Z1)**2#susceptance in mho in branch 1
g2=R2/(Z2)**2# conductance of branch 2 in mho
b2=X2/(Z2)**2#susceptance in mho in branch 2
g3=R3/(Z3)**2# conductance of branch 3 in mho
b3=X3/(Z3)**2#susceptance in mho in branch 3
G=g1+g2+g3# total conductance in mho
B=b1+b2-b3# total susceptance in mho
Y=math.sqrt(G**2+B**2)#in ohms
I0=V*Y#curent in ampere
theta=math.acos(G/Y)#
def decdeg2dms(dd):
mnt,sec = divmod(dd*3600,60)
deg,mnt = divmod(mnt,60)
return deg,mnt,sec
phiAct = decdeg2dms(theta*180/math.pi)
I=V/Z3#curent in amperes
pf3=R3/Z3#power factor
phi=math.acos(pf3)#angle of phase differnce in degree
tc3=pf3#
ts3=math.sin(phi)
pf1=R1/R1#
tc1=pf1#
ts1=math.sin(math.acos(pf1))#
I1=V/Z1#
E1=I1*tc1# energy component in branch 1
EL1=I1*ts1# idel current component in branch 1
I2=V/Z2#
pf2=R2/Z2#
tc2=pf2#
ts2=math.sin(math.acos(pf2))#
E2=I2*tc2#ENERGY COMPONENT IN BRANCH2
EL2=I2*ts2#idele current component in branch 2
E3=I*tc3#energy component in branch3
EL3=I*ts3#idle component of current in branch 3
E=E1+E2+E3#sum of energy component of current
EL=EL1+EL2-EL3#sum of idel component of current
It=math.sqrt(E**2+EL**2)# total current
pft=E/It#power factor of the complete circuit
phi=math.acos(0.95)#angle of phase differnce in degree
Zt=V/It#in ohms
R=Zt*pft#equivalent series resistance
X=Zt*(math.sin(phi))#equivalent series reactance
#Results
print "(a)current in amperes is",round(I0)
print "Phase angle is ",phiAct[0],"Degrees and ",phiAct[1],"minutes"
print "(c)equivalent series resistance in ohms is",round(R,2)
print "euivalent series reactance in ohms is",round(X,3)