Rm=100.0 #Ohms, coil resistance
Is=100*10**(-6 ) #A current sensivity
Vr=100.0 #V, voltage
#Calculation
Rtotal=Vr/Is #series resistance
Rs=Rtotal-Rm #additional series resistance
#Result
print " The Series Resistance to Convert given dArsonval movement into a Voltmeter is, Rs = ",Rs/10**3,"Kohm"
Rm=100.0 #. meter resistance #Ohms
CS=100*10**(-6) #A. current sensivity
Imax=10*10**(-3) #A. maximum current
#Calculation
Ish=Imax-CS
Rsh=Rm*CS/Ish
# Result
print " The Value of Shunt Resistance is, Rsh = ",round(Rsh,6),"ohm"
CS=100*10**(-6) #A, current source
R=100.0 #Ohms, resistance
Rm=900.0 #Ohms, resistance of a meter
#(a)
#Calculation
Imax1=1*10**(-3) #A, maximum current
Rsh=CS*R/(Imax1-CS) #ohm, shunt path resistance
Rm1=Rm #ohm, meter branch resistance
Ish1=Imax1-CS #A shunt path current
Rsh1=Rm1*CS/Ish1 #ohm shunt path resistance
#(b)
#Calculation
Imax2=0.01 #A, maximum current
Ish2=Imax2-CS #A, shunt path current
R1=(R*Ish2-Rm*CS)/(Ish2+CS) #ohm, resistance in branch 1
#(c)
#Calculation
Imax3=100*10**(-3) #A. maximum current
Ish3=Imax3-CS #A, shunt path current
R2=((R-R1)*Ish3-Rm*CS)/(Ish3-CS) #ohm, resistance in branch 2
#(d)
#Calculation
Imax4=500*10**(-3) #A , maximum current
Ish4=Imax4-CS #A, shunt path current
R3=((R-R1-R2)*Ish4-Rm*CS)/(Ish4-CS) #ohm, resistance in branch 3
#(e)
#Calculation
Imax5=1 #A
Ish5=Imax5-CS #A, shunt path current
R4=((R-R1-R2-R3)*Ish5-Rm*CS)/(Ish5-CS) #ohm, resistance in branch 4
R5=R-R1-R2-R3-R4 #ohm, resistance in branch 2
# Result
print " Shunt Resistance =",round(Rsh,6),"ohm"
print " For Range switch at 1 mA , Rsh1 ",Rsh1,"ohm"
print " For Range switch at 10 mA , R1 = ",R1,"ohm"
print " For Range switch at 100 mA, R2 = ",round(R2,0),"ohm"
print " For Range switch at 500 mA, R3 = ",round(R3,1),"ohm"
print " For Range switch at 1 A , R4 = ",round(R4,1),"ohm"
print " R5 = ",round(R5,1),"ohm"
DS=5 #V/cm, Deflection Sensitivity
l=10 #cm, Trace Length
#Calculation
import math
Vp=DS*l
Vm=Vp/2
V=Vm/math.sqrt(2)
# Result
print " The RMS AC Voltage is=",round(V,3),"V"
%matplotlib inline
import numpy
#Given Circuit Data
Am=3.5 #V, Amplitude
tb=0.1*10**(-3) #seconds
TP=4 #Time Period
x=linspace(-10,10,1000)
plt.grid()
plot(x,cos(x))
title('Display of a sine wave voltage on CRO ')
show()
#Calculation
import math
Vm=2*Am
V=Vm/math.sqrt(2)
T=TP*tb
f=1/T
# Result
print "The Magnitude of Wave Voltage, ",round(V,2),"V"
print " The Frequency of Wave Voltage, f = ",f/10**3,"KHz"