# Chapter 2:Current and Voltage Source¶

### Example 2.1 Page no.39¶

In :
Vs=2           #V open circuit voltage
Rs=1           #ohm . internal impedence
#Current Source or Norton's Representaion (Parallel Current Source & Resistor
Is=Vs/Rs    #Ampere, short circuit current
#result
print "The Short Circuit Current Value is  ",Is,"A"
print "The Source Impedence Value is ",Rs,"ohm"
print "The Current Source & Source Impedance are connected in Parallel."

The Short Circuit Current Value is   2 A
The Source Impedence Value is  1 ohm
The Current Source & Source Impedance are connected in Parallel.


### Example 2.2 Page no.40¶

In :
Is=0.2          #Amperes
Zs=100       #Ohms
#Voltage Source or Thevenin's Representaion (Series Voltage Source & Resistor)
Vs=Is*Zs   #Volts
# Results
print "The Open Circuit Voltage is  ",Vs,"V"
print "The Source Impedence Value is  ",Zs,"ohm"
print "The Voltage Source & Source Impedance are connected in Series."

The Open Circuit Voltage is   20.0 V
The Source Impedence Value is   100 ohm
The Voltage Source & Source Impedance are connected in Series.


### Example 2.3 Page no.40¶

In :
Is=1.5*10**(-3)       #Amperes ,source current
Zs=2000            #Ohms, resistance connected to the loads
Z1=10000          #Ohms , load resistance 1
#Calculation for Current Source Representation
Zl=Z1*Z2/(Z1+Z2)
I2=Is*Zs/(Zs+Zl)
I4I=I2*Z1/(Z1+Z2)     #Using Current Divider Rule

#Calculation for Current Source Representation
Vs=Is*Zs                    #Open Circuit Volatge
I=Vs/(Zs+Zl)
I4V=I*Z1/(Z1+Z2)    #Using Current Divider Rule
# Results
print "The Load Current using Current Source Representaion is I4I =  ",I4I,"A"
print "The Load Current using Voltage Source Representaion is I4V =  ",I4V,"A"
print "I4I==I4V so"
print " Both Results are same."

The Load Current using Current Source Representaion is I4I =   6e-05 A
The Load Current using Voltage Source Representaion is I4V =   6e-05 A
I4I==I4V so
Both Results are same.


### Example 2.4 Page no.45¶

In :

Vs=0.01              #V ,dc voltage
Rs=1000            # ohm, resistance
#Output Side resistance
Ro1=20000       #ohm, 20 kOhms
Ro2=2000         # Ohms

#Calculation
i=Vs/Rs          #Input Current
Io=100*i       #Output Current
Il=Io*Ro1/(Ro1+Ro2)  #Using Current Divider Rule
Vo=Il*Ro2                     #Output Volatge

# Result
print "The Output Voltage Vo =  ",round(Vo,3),"V"

The Output Voltage Vo =   1.818 V