Vs=2 #V open circuit voltage
Rs=1 #ohm . internal impedence
#Current Source or Norton's Representaion (Parallel Current Source & Resistor
Is=Vs/Rs #Ampere, short circuit current
#result
print "The Short Circuit Current Value is ",Is,"A"
print "The Source Impedence Value is ",Rs,"ohm"
print "The Current Source & Source Impedance are connected in Parallel."
Is=0.2 #Amperes
Zs=100 #Ohms
#Voltage Source or Thevenin's Representaion (Series Voltage Source & Resistor)
Vs=Is*Zs #Volts
# Results
print "The Open Circuit Voltage is ",Vs,"V"
print "The Source Impedence Value is ",Zs,"ohm"
print "The Voltage Source & Source Impedance are connected in Series."
Is=1.5*10**(-3) #Amperes ,source current
Zs=2000 #Ohms, resistance connected to the loads
Z1=10000 #Ohms , load resistance 1
Z2=40000 #Ohms load resistance 2
#Calculation for Current Source Representation
Zl=Z1*Z2/(Z1+Z2)
I2=Is*Zs/(Zs+Zl)
I4I=I2*Z1/(Z1+Z2) #Using Current Divider Rule
#Calculation for Current Source Representation
Vs=Is*Zs #Open Circuit Volatge
I=Vs/(Zs+Zl)
I4V=I*Z1/(Z1+Z2) #Using Current Divider Rule
# Results
print "The Load Current using Current Source Representaion is I4I = ",I4I,"A"
print "The Load Current using Voltage Source Representaion is I4V = ",I4V,"A"
print "I4I==I4V so"
print " Both Results are same."
Vs=0.01 #V ,dc voltage
Rs=1000 # ohm, resistance
#Output Side resistance
Ro1=20000 #ohm, 20 kOhms
Ro2=2000 # Ohms
#Calculation
i=Vs/Rs #Input Current
Io=100*i #Output Current
Il=Io*Ro1/(Ro1+Ro2) #Using Current Divider Rule
Vo=Il*Ro2 #Output Volatge
# Result
print "The Output Voltage Vo = ",round(Vo,3),"V"