alpha=0.98 #alpha(dc), current gain
Ico=1*10**(-6) #Ampere, collector leakage current
Ie=1*10**(-3) # Ampere, emitter current
#Calculation
Ic=alpha*Ie+Ico #Collector Current
Ib=Ie-Ic #Base Current
#result
print " The Collector Current is Ic= ",Ic*1000,"mA"
print " The Base Current is Ib= ",Ib*10**6,"microA"
dIe=(0.7-0.3)*10**(-3) #A, change in emitter current
dVeb=(0.7-0.62) #V, change in emitter base voltage
#Calculation
ri=dVeb/dIe #Dynamic Input Resistance at Vcb= -10 V
#Result
print " The Dynamic Input Resistance is ri= ",ri,"ohm"
dIe=1*10**(-3) #A, change in emitter current
dIc=0.99*10**(-3) #A, change in the collector current
#Calculation
hfb=dIc/dIe #Short Circuit Current Gain
#Result
print "The Short Circuit Current Gain is alpha or hfb= ",hfb
dIe=1*10**(-3) #A, change in emitter current
dIc=0.995*10**(-3) #A, change in collector current
#Calculation
alpha=dIc/dIe #Common Base Short Circuit Current Gain
#Result
print " The Common Base Short Circuit Current Gain is alpha= ",alpha
#(b)
beeta=alpha/(1-alpha) #Common Emitter Short Circuit Current Gain
# Result
print " The Common Emitter Short Circuit Current Gain is beeta= ",beeta
Beeta=100.0 #dc current gain
#Calculation
Alpha=Beeta/(Beeta+1) #DC Current Gain in Common Base Configuration
# Result
print " The DC Current Gain in Common Base Configuration is Alpha= ",round(Alpha,2)
Vce=10 #V, collector emitter voltage
Ib=30*10**(-6) #A, base current
#Calculation from Given Output Characteristics at Ib = 30uA
dVce=(12.5-7.5) #V, change in collector emitter voltage
dic=(3.7-3.5)*10**(-3) #A, change in collector current
Ic=3.6*10**(-3) #A, collector current at operating point
ro=dVce/dic # Dynamic Output Resistance
Beeta_dc=Ic/Ib # DC Current Gain
Beeta_ac=((4.7-3.6)*10**(-3))/((40-30)*10**(-6)) #AC Current Gain, From Graph, Bac=delta(ic)/delta(ib) for given Vce
# Result
print "Dynamic Output Resistance ,ro = ",ro/10**(3),"kohm"
print " DC Current Gain ,Bdc = ",Beeta_dc
print " AC Current Gain ,Bac = ",Beeta_ac
Vcc=12 #V, collector bias juncyion voltage
Rc=1000.0 #Ohms, collector resistance
Vbb=10.7 #V. base bias junction voltage
Rb=200000.0 #Ohms, base resistance
Vbe=0.7 #V, base emitter voltage
#Calculation
Ib=(Vbb-Vbe)/Rb # base current
#Value of Ib comes out to be 50uA. A dotted Curve is drawn for
#Ib=40uA and Ib=60uA. At the Point of Intersection:
Vce=6 #V, collector emitter voltage
Ic=6*10**(-3) #A, collector current
# Result
print " Q point: Ib = ",Ib/10**(-6),"microA"
print " Vce = ",Vce,"V"
print " Ic = ",Ic/10**(-3),"mA"
#Plot
#DC Load LIne AT Ib=50 microA
Vce1=[0,12]
Ic1=[12,0]
a1=plot(Vce1,Ic1)
xlim(0,14)
ylim(0,17)
# AT Ib=20 microA
Vce2=[0,1,12]
Ic2=[0,1.5,3]
a2=plot(Vce2,Ic2)
# AT Ib=40 microA
Vce3=[0,1,12]
Ic3=[0,4,5]
a3=plot(Vce3,Ic3)
#At IB=50
Vcex=[3.2,9]
Icx=[5.5,6]
ax=plot(Vcex,Icx,linestyle='--')
qx=plot(6.1,5.9,marker='o',label='$Q point$')
legend()
# AT Ib=60 microA
Vce4=[0,1,12]
Ic4=[0,6.5,8]
a4=plot(Vce4,Ic4)
# AT Ib=80 microA
Vce5=[0,1,12]
Ic5=[0,9,10]
a5=plot(Vce5,Ic5)
# AT Ib=100 microA
Vce6=[0,1,12]
Ic6=[0,12,12.5]
a6=plot(Vce6,Ic6)
# AT Ib=120 microA
Vce7=[0,1,12]
Ic7=[0,14.2,15]
a7=plot(Vce7,Ic7)
xlabel("$Vce(volt)$")
ylabel("$Ic(mA)$")
show(a1)
show(ax)
show(qx)
show(a2)
show(a3)
show(a4)
show(a5)
show(a6)
show(a7)
u=80.0 # Amplification Factor
gm=200*10**(-6) # S, Transconductance
#Calculation
rd=u/gm #Dynamic Drain Resistance
# Result
print " The Dynamic Drain Resistance of JFET is rd= ",rd/10**(3),"kohm"