# Chapter 14 : Further Developments¶

## Example 14.1 Page No : 532¶

In [1]:
%matplotlib inline
import math
from matplotlib.pyplot import *

#initialisation of variables
a= 60.5
Q= 0.2       	#ft**3/sec flow rate
d= 3.        	#in diameter
u= 0.0325
g= 32.2 	#ft/sec**2
T= [50.0, 60.0, 70.0, 80.0, 90.0, 100.0]
Ep= [294.5, 188.6, 113.2, 60.4, 37.7, 24.5]
Eh= [0 ,69.9, 139.8, 209.7, 279.5, 349.4]
Et= [295, 258, 253, 270, 317, 374]

#CALCULATIONS
re= a*4*Q/(math.pi*(d/12)*u*g)

#RESULTS
print  'Reynolds Number = %.1f '%(re)
print (T)
print (Ep)
print (Eh)
print (Et)
plot(T,Ep)
plot(T,Eh)
plot(T,Et)

xlabel("T (F)")
ylabel("Eh,Ep,Eh&Ep (kW)")
suptitle("Variations of Ep, Eh and (Ep+Eh) with T")

Populating the interactive namespace from numpy and matplotlib
Reynolds Number = 58.9
[50.0, 60.0, 70.0, 80.0, 90.0, 100.0]
[294.5, 188.6, 113.2, 60.4, 37.7, 24.5]
[0, 69.9, 139.8, 209.7, 279.5, 349.4]
[295, 258, 253, 270, 317, 374]

Out[1]:
<matplotlib.text.Text at 0x2b11ed0>

## Example 14.2 Page No : 535¶

In [4]:

#initialisation of variables
wcb= 2.      	#ton weighing
wc= 100. 	    #ton
wa= 6.5 	    #% of the weight
wca= 20.
r= 0.8
r1= 1.2

#CALCULATIONS
wca1= wc/wa
wca2= wcb*(wca1/wca)**1.5
Wca= wcb*r**(9./4)*(1./r1)**(9./4)*(wca1/wca)**1.5

#RESULTS
print  ' Wc/Wa = %.2f '%(wca1)
print  ' Wc,a = %.2f ton'%(wca2)
print  ' Wc,a = %.2f ton'%(Wca)

 Wc/Wa = 15.38
Wc,a = 1.35 ton
Wc,a = 0.54 ton