# Chapter 9 : Analysis of Two-Dimensional, Constant-Density, Turbulent Flow¶

## Example 9.1 Page No : 324¶

In [1]:
import math

#initialisation of variables
n=7.
w= 62.4 	#lbf/ft**3 density
v= 6.   	#ft/sec velocity
d= 2. 	    #in pipe diameter
u= 2.34*10**-5 	#lbf/ft**3 viscosity
f= 0.0178
g= 32.2 	#ft/sec**2
R= 1.224
R1= 8.  	#ft/sec

#CALCULATIONS
r= (n+1)*(2*n+1)/(2*n**2)
Red= w*v*(d/12)/(u*g)
C= (d/Red)**(1./7)*R*(R1/f)**(4./7)
V = v*math.sqrt(f/8)

#RESULTS
print  ' Vmax/V = %.3f'%(r)
print  ' Red = %.2e'%(Red)
print  ' C = %.2f'%(C)
print  ' Velocity = %.3f ft/sec'%(V)

 Vmax/V = 1.224
Red = 8.28e+04
C = 8.79
Velocity = 0.283 ft/sec


## Example 9.3 Page No : 332¶

In [2]:

#initialisation of variables
Re= 5.
g= 32.2 	#ft/sec**2
u= 2.34*10**-5 	#lbf/ft sec
w= 62.4 	#lbf/ft**3
v= 0.283 	#ft/sec
Re1= 70.
v1= 0.0374 	#ft/sec

#CALCULATIONS
y= Re*u*g/(w*v)
y1= Re1*u*g/(w*v)
y2= Re*u*g/(w*v1)
y3= Re1*u*g/(w*v1)

#RESULTS
print  ' y = %.6f ft'%(y)
print  ' y = %.5f ft'%(y1)
print  ' y = %.5f ft'%(y2)
print  ' y = %.4f ft'%(y3)

 y = 0.000213 ft
y = 0.00299 ft
y = 0.00161 ft
y = 0.0226 ft