import math
# variables
V=15.; #gal volume of gasoline
t=2.; #min
rho_water=62.3; #lbm/ft^3
sg=0.72; #specific gravity
# calculation and Result
q=(15/2.0)*(0.1336/60) #ft^3/s vol. flow rate
print "volumetric flow rate is %f ft^3/s"%q
m=q*sg*rho_water #lbm/s
print "Mass flow rate is %f lbm/s"%m
d=1.; #in diameter of pipe
a=((math.pi)*d**2/4.0)/144.0; #ft^2 area of pipe
v_avg=q/a #ft/s
print "The average velocity is %f ft/s"%v_avg
import math
# variables
d1=2.; #ft diameter of pipe at position 1
a1=(math.pi)/4*d1**2; #ft^2
v1=50.; #ft/s vel of gas at position 1
rho1=2.58; #lbm/ft^3 density of gas at position 1
d2=3.; #ft diameter of pipe at position 2
# calculation
a2=(math.pi)/4*d2**2;
rho2=1.54; #lbm/ft^3 density at position 2
v2=(rho1/rho2)*(a1/a2)*v1 #ft/s
# result
print "Velocity is %f ft/s"%v2
m=rho1*v1*a1 #lbm/s mass flow rate
print "The mass flow rate is %f lbm/s"%m
import math
# variables
d1=0.25; #m diameter of pipe at position 1
v1=2.; #m/s velocity
rho=998.2; #kg/m^3 density of water
a1=(math.pi)/4*d1**2; #m^2
d2=0.125 #m diameter of pipe at position 2
# calculation
a2=(math.pi)/4*d2**2; #m^2
m=rho*a1*v1 #kg/s mass flow rate
# result
print "Mass flow rate is %f kg/s"%m
q=m/rho #m^3/s volumetric flow rate
print "The volumetric flow rate is %f m^3/s"%q
v2=(a1/a2)*v1 #m/s velocity
print "Velocity of water is %f m/s"%v2
import math
# variables
p_initial=1.; #atm pressure initially
p_final=0.0001; #atm pressure finally
V=10.; #ft^3 volume of system
q=1.; #ft^3/min vol. flow rate
# calculation
t=(V/q)*math.log(p_initial/p_final) #min
# result
print "The time required is %f min"%t
# variables
m_in=0.0001; #lbm/min
q_out=1.; #ft^3/min
rho_sys=m_in/q_out #lbm/ft^3
rho_air=0.075; #lbm/ft^3
p_initial=1.; #atm
# calculation
p_steady=p_initial*(rho_sys/rho_air) #atm
# result
print "The steady state pressure is %f atm"%p_steady
import math
# variables
d=3.; #m diameter of tank
a=(math.pi)*d**2/4; #m^2
d_in=0.1; #m inner diameter of inflow pipe
d_out=0.2; #m
v_in=2.0; #m/s
v_out=1.0; #m/s
# calculation
q_in=((math.pi)*d_in**2/4.0)*v_in; #m^3/s
q_out=((math.pi)*d_out**2/4.0)*v_out; #m^3/s
#let D represent d/dt
DV=q_in-q_out; #m^3/s
# result
if DV>1:
print "The water level in tank is rising"
elif DV<1:
print "The water level in tank is falling"
else:
print "No accumulation"
#let h be the height of water in tank
Dh=DV/a #m/s
print "The rate of level of water is rising or falling in a cylindrical tank is %f m/s"%Dh
# variables
q=5/8.0; #kg/hr mass evaporation rate of benzene
c=1.3*10**(-6); #kg/m^3 concentration of benzene
# calculation
Q=q/c/3600.0 #m^3/s
# result
print "The flow rate of ventilation air supply is %f m^3/s"%Q