In [1]:

```
#Input data
ms=5000 #Boiler produces wet steam in Kg/h
x=0.95 #Dryness function
P=10 #Operating pressure in bar
mf=5500 #Bour in the furnace in Kg
Tw=40 #Feed water temp in degree celsius
#calculation
#from steam table
hfw=167.45 #In KJ/Kg
hf=762.61 #In KJ/Kg
hfg=2031.6 #In KJ/Kg
hs=(hf+x*hfg) #Enthalpy of wet stream in KJ/Kg
me=ms/mf #Mass of evaporation
E=((me*(hs-hfw))/(2257))*10 #Equivalent evaporation in Kg/Kg of coal
#output
print("Enthalpy of wet stream=",round(hs,2),"KJ/Kg")
print("Mass of evaporation=",round(me,2),)
print("Equivalent evaporation=",round(E,2),"Kg/Kg of coal")
```

In [2]:

```
#Input data
p=14 #Boiler pressure in bar
me=9 #Evaporates of water in Kg
Tw=35 #Feed water entering in degree celsius
x=0.9 #Steam stop value
CV=35000 #Calorific value of the coal
#Calculation
#From Steam Table
hfw=146.56 #In KJ/Kg
hf=830.07 #In KJ/Kg
hfg=1957.7 #In KJ/Kg
hs=hf+x*hfg #Enthalpy of wet stream in KJ/Kg
E=((me*(hs-hfw))/2257) #Equivalent evaporation in Kg/Kg of coal
etaboiler=((me*(hs-hfw))/CV)*100#Boiler efficiency in %
#Output
print("Enthalpy of wet stream=",hs,"KJ/Kg")
print("Equivalent evaporation=",round(E,2),"Kg/Kg of coal")
print("Boiler efficiency=",round(etaboiler,2),"%")
```

In [3]:

```
#Input data
ms=2500 #Saturated steam per bour in Kg
x=1
P=15 #Boiler pressure in bar
Tw=25 #Feed water entering in degree celsius
mf=350 #Coal burnt in Kg/bour
CV=32000 #Calorific value in Kj/Kg
#calculation
#steam table
hfw=104.77 #In KJ/Kg
hf=844.66 #In KJ/Kg
hfg=1945.2 #In KJ/Kg
hg=2789.9 #In KJ/Kg
hs=2789.9 #Enthalpy of dry steam in KJ/Kg
me=ms/mf #mass of evaporation
E=((me*(hs-hfw))/2257) #Equivalent evaporation in Kg/Kg ofcoal
etaboiler=((me*(hs-hfw))/CV)*100 #Boiler efficiency in %
#Output
print("mass of evaporation=",round(me,3),)
print("Equivalent evaporation=",round(E,2),"Kg/Kg ofcoal")
print("Boiler efficiency=",round(etaboiler,2),"%")
```

In [4]:

```
#Input data
mf=500 #Boiler plant consumes of coal in Kg/h
CV=32000 #Calorific value in Kj/Kg
ms=3200 #plant generates in Kg/h
P=1.2 #Absolute pressure MN/m**2
MN=12
Tsup=300 #Absolute temperature in degree celsius
Tw=35 #Feed water temperature
Cps=2.3
#calculation
hfw=146.56 #In KJ/Kg
Ts=187.96 #In Degree celsius
hf=798.43 #In KJ/Kg
hfg=1984.3 #In KJ/Kg
hg=2782.7 #In KJ/Kg
hs=hg+Cps*(Tsup-Ts) #Enthalpy of superheated steam in KJ/Kg
me=ms/mf #mass of evaporation
E=((me*(hs-hfw))/2257) #Equivalent evaporation in Kg/Kg ofcoal
etaboiler=((me*(hs-hfw))/CV)*100#Boiler efficiency in %
#Output
print("Enthalpy of superheated steam=",round(hs,2),"KJ/Kg")
print("mass of evaporation=",me,)
print("Equivalent evaporation=",round(E,1),"Kg/Kg ofcoal")
print("Boiler efficiency",round(etaboiler,2),"%")
```

In [5]:

```
#Input data
ms=5000 #Steam generted in Kg/h
mf=700 #Coal burnt in Kg/h
CV=31402 #Cv of coal in KJ/Kg
x=0.92 #quality of steam
P=1.2 #Boiler pressure in MPa
Tw=45 #Feed water temperature in degree celsius
#calculation
hfw=188.35 #In KJ/Kg
hf=798.43 #In KJ/Kg
hfg=1984.3 #In KJ/Kg
hs=hf+x*hfg #Enthalpy of wet stream in KJ/Kg
me=ms/mf #mass of evaporation
E=((me*(hs-hfw))/2257) #Equivalent evaporation in Kg/Kg of coal
etaboiler=((me*(hs-hfw))/CV)*100 #Boiler efficiency in %
#Output
print("Enthalpy of wet stream=",round(hs,2),"KJ/Kg")
print("mass of evaporation=",round(me,2),"")
print("Equivalent evaporation=",round(E,1),"Kg/Kg of coal")
print("Boiler efficiency=",round(etaboiler,2),"%")
```

In [6]:

```
#Input data
ms=6000 #Boiler produce of steam Kg/h
P=25 #Boiler pressure in bar
Tsup=350 #Boiler temperature in degree celsius
Tw=40 #Feed water temperature indegree celsius
CV=42000 #Calorific value in Kj/Kg
etaboiler=75/100 #Expected thermal efficiency in %
#Calculation
hfw=167.45 #In KJ/Kg
Ts=223.94 #In degree celsius
hf=961.96 #In KJ/Kg
hfg=1839.0 #In KJ/Kg
hg=2800.9 #In KJ/Kg
Cps=2.3
hs=((hg)+(Cps)*(Tsup-Ts)) #Enthalpy of superheated steam KJ/Kg
mf=((ms*(hs-hfw))/(CV*etaboiler)) #Boiler efficiency in %
me=ms/mf #Equivalent mass of evaporation
E=((me*(hs-hfw))/2257) #Equivalent evaporation in Kg/Kg of oil
#Output
print("Enthalpy of superheated steam=",hs,"KJ/Kg")
print("Boiler efficiency=",round(mf,1),"%")
print("Equivalent mass of evaporation=",round(me,3),)
print("Equivalent evaporation=",round(E,2),"Kg/Kg of oil")
```

In [7]:

```
#Input data
E=12 #Boiler found steam in Kg/Kg
CV=35000 #Calorific value in KJ/Kg
ms=15000 #Boiler produces in Kg/h
P=20 #Boiler pressure in bar
Tw=40 #Feed water in degree celsius
mf=1800 #Fuel consumption
#calculation
#R=me(hs-hfw)
hfw=167.45 #In KJ/Kg
hg=2797.2 #In KJ/Kg
Ts=211.37 #In degree celsius
Cps=2.3
R=E*2257 #Equivalent evaporation in KJ/Kg of coal
etaboiler=(R/CV)*100 #Boiler efficiency in %
me=ms/mf #Equivalent mass evaporation in KJ/Kg of coal
hs=(R/me)+hfw # In KJ/Kg
Tsup=((hs-hg)/Cps)+Ts #Enthalpy of superheated steam in degree celsius
#Output
print("Equivalent evaporation=",R,"KJ/Kg of coal")
print("Boiler efficiency=",round(etaboiler,2),"%")
print("Equivalent mass evaporation=",round(me,2),"KJ/Kg of coal")
print("hs=",round(hs,2),"KJ/Kg")
print("Enthalpy of superheated steam=",round(Tsup,2),"degree celsius")
```

In [8]:

```
#Input data
ms=6000 #Steam generated in Kg/h
mf=700 #Coal burnt in Kg/h
CV=31500 #Cv of coal in KJ/Kg
x=0.92 #Dryness in fraction of steam
P=12 #Boiler pressure in bar
Tsup=259 #Temperature of steam in degree celsius
Tw=45 #Hot well temperature in degree celsius
#calculation
hfw=188.35 #In KJ/Kg
Ts=187.96 #In degree celsius
hf=798.43 #In KJ/Kg
hfg=1984.3 #In KJ/Kg
hg=2782.7 #In KJ/Kg
Cps=2.3
me=ms/mf #Equivalent mass evaporation
hs=hf+x*hfg #Enthalpy of wet steam in KJ/Kg
E=((me*(hs-hfw))/2257) #Equivalent evaporation in Kg/Kg of coal
hs1=(hg+Cps*(Tsup-Ts)) #Enthalpy of superheated steam in KJ/Kg
E1=((me*(hs1-hfw))/2257) #Equivalent evaporation(with superheater) in Kg/Kg of coal
etaboiler=((me*(hs-hfw))/CV)*100 #Boiler efficiency without superheater in %
etaboiler1=((me*(hs1-hfw))/CV)*100#Boiler efficiency with superheater in %
#Output
print("Equivalent mass evaporation=",round(me,2),)
print("Enthalpy of wet steam=",hs,"KJ/Kg")
print("Equivalent evaporation=",round(E,2),"Kg/Kg of coal")
print("Enthalpy of superheated steam=",round(hs1,2),"KJ/Kg")
print("Equivalent evaporation(with superheater)=",round(E1,2),"Kg/Kg of coal")
print("Boiler efficiency without superheater=",round(etaboiler,2),"%")
print("Boiler efficiency without superheater=",round(etaboiler1,2),"%")
```

In [9]:

```
#Input data
P=15 #Boiler produces steam in bar
Tsup=250 #Boiler temperature in degree celsius
Tw=35 #Feed water in degree celsius
MWh=1.5 #steam supplied to the turbine
CV=32000 #Coal of calorific value in KJ/Kg
etaboiler=80/100 #Thermal efficiency in %
fr=210 #Firing rate in Kg/m**2/h
#From steam table(temp basis at 35 degree celsius)
hfw=146.56 #In KJ/Kg
Ts=198.29 #In degree celsius
hfg=1945.2 #In KJ/Kg
hg=2789.9 #In KJ/Kg
Cps=2.3
#calculator
hs=hg+Cps*(Tsup-Ts) #Enthalpy of superheated steam(with superheater) in KJ/Kg
ms=9000/MWh #Steam rate in Kg/MWh
mf=((ms*(hs-hfw))/(etaboiler*CV)) #Mass of steam consumption in Kg/h
GA=mf/fr #Grate rate in m**2
#Output
print("Enthalpy of superheated steam(with superheater)=",hs,"KJ/Kg")
print("Steam rate=",ms,"Kg/h")
print("ass of steam consumption=",round(mf,1),"Kg/h")
print("Grate rate=",round(GA,3),"m**2")
```

In [10]:

```
#Input data
ma=18 #Boileruses of per Kg of fuel in Kg/Kg
hw=25*10**-3 #Chimney height to produce draught in mm
Tg=315+273 #Temperature of chimney gases in degree celsius
Ta=27+273 #Out side air temp in degree celsius
#Calculation
#Draught produce in terms of water column in m
H=(hw/(353*(1/Ta-1/Tg*((ma+1)/ma))))*1000
#Output
print("Draught produce in terms of water column=",round(H,2),"m")
```

In [11]:

```
#Input data
H=40 #High discharge in m
ma=19 #Fuel gases per Kg of fuel burnt
Tg=220+273 #Average temp of fuel gases in degree celsius
Ta=25+273 #Ambient temperature in degreee celsius
#calculation
hw=353*H*(1/Ta-1/Tg*((ma+1)/ma)) #Draught produce in terms of water column in mm
H1=H*((Tg/Ta)*(ma/(ma+1))-1) #Draught produce in terms of hot gas column in m
#output
print("Draught produce in terms of water column=",round(hw,2),"mm")
print("Draught produce in terms of hot gas column=",round(H1,2),"m")
```

In [12]:

```
#Input data
H=27 #Chimney height in m
hw=15 #Draught produces of water column in mm
ma=21 #Gases formed per Kg of fuel burnt in Kg/Kg
Ta=25+273 #Temperature of the ambient air in degree celsius
#calculation
Tg=-(((ma+1)/ma)/((hw/(353*H))-(1/Ta))) #Mean temperature of fuel gases in K
#Output
print("Mean temperature of fuel gases",Tg,"k")
```

In [13]:

```
#Input data
hw=20 #Static draught of water in mm
H=50 #Chimney height in m
Tg=212+273 #Temperature of the fuel degree celsius
Ta=27+273 #Atmospheric air in degree celsius
#calculation
ma=(-((hw/(353*H))-Ta*Tg))*10**-4 #Air-fuel ratio in Kg/Kg of fuel burnt-3
#Output
print("Air-fuel ratio",round(ma,1),"Kg/Kg of fuel burnt")
```

In [14]:

```
#Input data
import math
H=24 #Chimney height in m
Ta=25+273 #Ambient temperature in degree celsius
Tg=300+273 #Temperature of fuel gases in degree celsius
ma=20 #Combustion space of fuel burnt in Kg/Kgof fuel
g=9.81
#calculation
hw=((353*H)*((1/Ta)-((1/Tg)*((ma+1)/ma))))#Theoretical draught in millimeters of water in mm
H1=H*((Tg/Ta)*(ma/(ma+1))-1) #Theoretical draught produced in hot gas column in m
H2=H1-9.975 #Draught lost in friction at the grate and passage in m
V=math.sqrt(2*g*H2) #Actual draught produced in hot gas column in m
#Output
print("Theoretical draught in millimeters of water=",round(hw,2),"mm")
print("Theoretical draught produced in hot gas column=",round(H1,2),"m")
print("Draught lost in friction at the grate and passage=",round(H2,3),"m")
print("Actual draught produced in hot gas column=",round(V,),"m")
```

In [15]:

```
#Input data
import math
H=38 #Stack height in m
d=1.8 #Stack diameter discharge in m
ma=17 #Fuel gases per Kg of fuel burnt Kg/Kg
Tg=277+273 #Average temperature of fuel gases in degree celsius
Ta=27+273 #Temperature of outside air in degree celsius
h1=0.4 #Theoretical draught is lost in friction in
g=9.81
pi=3.142
#calculation
H1=H*(((Tg/Ta)*(ma/(ma+1))-1))#Theoretical draught produce in hot gas column in m
gp=0.45*27.8 #Draught lost in friction at the grate and pasage in m
C=H1-gp #Actual draught produce in hot gas column in m
V=math.sqrt(2*9.81*C) #Velocity of the flue gases in the chimney in m/s
rhog=((353*(ma+1))/(ma*Tg)) #Density of flue gases in Kg/m**3
mg=(rhog*((pi/4)*(d**(2))*V)) #Mass of gas flowing through the chimney in Kg/s
#Output
print("Theoretical draught produce in hot gas column=",round(H1,1),"m")
print("Draught lost in friction at the grate and pasage=",gp,"m")
print("Actual draught produce in hot gas column=",round(C,2),"m")
print("Velocity of the flue gases in the chimney =",round(V,2),"m/s")
print("Density of flue gases=",round(rhog,3),"Kg/m**3")
print("Mass of gas flowing through the chimney=",round(mg,),"Kg/s")
```

In [16]:

```
#Input data
import math
hw=1.9 #Drauhgt water in cm
Tg=290+273 #Temp of flue gases in degree celsius
Ta=20+273 #Ambient temp in degree celsius
ma=22 #Flue gases formed in kg/Kg of coal
d=1.8 #Fuel burnt in m
pi=3.142
g=9.81
#calculation
H=(hw/(353*(1/Ta-1/Tg*((ma+1)/ma))))*10 #Theoretical draught produced in water column in m
H1=H*(((Tg/Ta)*(ma/(ma+1))-1)) #Theoretical draught produced in hot gas column n m
V=math.sqrt(2*g*H1) #Velocity of tthe flue gases in the chimney in m/s
rhog=((353*(ma+1))/(ma*Tg)) #Density of flue gases in Kg/m**3
mg=rhog*((pi/4)*d**2)*V #Mass of gas flowing through the chimney in Kg/s
#Output
print("Theoretical draught produced in water column=",round(H,1),"m")
print("Theoretical draught produced in hot gas column=",round(H1,),"m")
print("Velocity of tthe flue gases in the chimney=",round(V,2),"m")
print("Density of flue gases=",round(rhog,4),"Kg/m**3")
print("Mass of gas flowing through the chimney=",round(mg,1),"Kg/s")
```

In [17]:

```
#Input data
import math
mf=8000 #Average coal consumption in Kg/h
ma=19 #Flue gases formed in Kg/Kg
Tg=270+273 #Average temperature of the chimney in degree celsius
Ta=27+273 #Ambient temperature in degree celsius
hw=18 #Theoretical draught produced by the chimney in mm
h1=0.6 #Draught is lost in friction H1
g=9.81
pi=3.142
#calculation
H=(hw/(353*(1/Ta-1/Tg*((ma+1)/ma)))) #Theoretical draught produced in water column in m
H1=H*(((Tg/Ta)*(ma/(ma+1)))-1) #Theoretical draught produced in hot gas column in m
gp=h1*H1 #Draught is lost in friction at the grate and passing in m
hgc=H1-gp #Actual draught produced in hot gas column in m
V=math.sqrt(2*g*(hgc)) #Velocity of the flue gases in the chimney in m/s
rhog=((353*(ma+1))/(ma*Tg)) #Density of flue gases in Kg/m**3
mg=((mf/3600)*ma) #Mass of gas fowing throgh the chimney in Kg/s
d=math.sqrt(mg/(rhog*(pi/4)*V)) #Diameter of the chimney in m
#Output
print("Theoretical draught produced in water column=",round(H,1),"m")
print("Theoretical draught produced in hot gas column=",round(H1,3),"m")
print("Draught is lost in friction at the grate and passing=",round(gp,2),"m")
print("Actual draught produced in hot gas column=",round(hgc,3),"m")
print("Velocity of the flue gases in the chimney=",round(V,2),"")
print("Density of flue gases=",round(rhog,3),"Kg/m**3")
print("Mass of gas fowing throgh the chimney=",round(mg,3),"Kg/s")
print("Diameter of the chimney=",round(d,3),"m")
```

In [18]:

```
#Input data
import math
H=24 #Chimney height in m
Ta=25+273 #Ambient temperature in degree celsius
Tg=300+273 #Temp of flue gases passing through the chimney in degree celsius
ma=20 #Combustion space of fuel burnt in Kg/kg of fuel
g=9.81
#calculation
hw=((353*H)*((1/Ta)-((1/Tg)*((ma+1)/ma)))) #Theoretical draught produced in water column in m
##Calculation mistake in book of hw it is correct according to data &calculation
H1=H*(((Tg/Ta)*(ma/(ma+1))-1)) #Theoretical draught produced in hot gas column in m
H2=0.5*H1 #Draught is lost in friction at the grate and passing in m
hgc=H1-H2 #Actual draught produced in hot gas column in m
V=math.sqrt(2*g*H2) #Velocity of the flue gases in the chimney in m/s
#Output
print("Theoretical draught produced in water column=",round(hw,1),"m")
print("Theoretical draught produced in hot gas column=",round(H1,2),"m")
print("Draught is lost in friction at the grate and passing=",round(H2,3),"m")
print("Actual draught produced in hot gas column=",round(hgc,3),"m")
print("Velocity of the flue gases in the chimney=",round(V,),"m/s")
```

In [19]:

```
#Input data
H=38 #Stack height in m
d=1.8 #Stack diameter in m
ma=18 #Flue gases per kg of the fuel burnt
Tg=277+273 #Average temp of the flue gases in degree celsius
Ta=27+273 #Temperature of outside air in degree celsius
h1=0.4 #Theorical draught is lost in friction in %
g=9.81
#calculation
H1=H*(((Tg/Ta)*(ma/(ma+1))-1)) #Theoretical draught produced in hot gas column in m
gp=0.40*H1 #Draught is lost in friction at the grate and passing in m
hgc=H1-gp #Actual draught produced in hot gas column in m
V=math.sqrt(2*g*hgc) #Velocity of the flue gases in the chimney in m/s
rhog=((353*(ma+1))/(ma*Tg)) #Density of flue gases in Kg/m**3
mg=rhog*((pi/4)*d**2)*V #Mass of gas fowing throgh the chimney in Kg/s
#Output
print("Theoretical draught produced in hot gas column=",round(H1,3),"m")
print("Draught is lost in friction at the grate and passing=",round(gp,2),"m")
print("Actual draught produced in hot gas column=",round(hgc,2),"m")
print("Velocity of the flue gases in the chimney=",round(V,2),"m/s")
print("Density of flue gases=",round(rhog,2),"Kg/m**3")
print("Mass of gas fowing throgh the chimney=",round(mg,1),"Kg/s")
```

In [20]:

```
#Input data
import math
hw=19 #Draught produced water in cm
Tg=290+273 #Temperature of flue gases in degree celsius
Ta=20+273 #Ambient temperature in degree celsius
ma=22 #Flue gases formed per kg of fuel burnt in kg/kg of coal
d=1.8 #Diameter of chimney
g=9.81
#calculation
H=(hw/((353)*((1/Ta)-((1/Tg)*((ma+1)/ma))))) #Theoretical draught produced in hot gas column in m
H1=H*(((Tg/Ta)*(ma/(ma+1))-1)) #Draught is lost in friction at the grate and passing in m
V=math.sqrt(2*g*H1) #Velocity of the flue gases in the chimney in m/s
rhog=((353*(ma+1))/(ma*Tg)) #Density of flue gases in Kg/m**3
mg=rhog*((pi/4)*d**2)*V #Mass of gas fowing throgh the chimney in Kg/s
#Output
print("Theoretical draught produced in hot gas column=",round(H,),"m")
print("Draught is lost in friction at the grate and passing=",round(H1,1),"m")
print("Velocity of the flue gases in the chimney=",round(V,2),"m/s")
print("Density of flue gases=",round(rhog,4)," Kg/m**")
print("Mass of gas fowing throgh the chimney=",round(mg,1),"Kg/s")
```

In [21]:

```
#Input data
import math
mf=8000 #Average coal consumption in m
ma=18 #Fuel gases formed ccoal fired in m
Tg=270+273 #Average temp of the chimney of water in degree celsius
Ta=27+273 #Ambient temp in degree celsius
hw=18 #Theoretical draught produced by the chimney in mm
h1=0.6 #Draught is lost in friction in H1
g=9.81
pi=3.142
#calculation
H=(hw/((353)*((1/Ta)-((1/Tg)*((ma+1)/ma))))) #Theoretical draught produced in water column in m
H1=H*(((Tg/Ta)*(ma/(ma+1))-1)) #Theoretical draught produced in hot gas column in m
gp=0.6*H1 #Draught is lost in friction at the grate and passing in m
hgc=H1-gp #Actual draught produced in hot gas column in m
V=math.sqrt(2*g*hgc) #Velocity of the flue gases in the chimney in m/s
rhog=((353*(ma+1))/(ma*Tg)) #Density of flue gases in Kg/m**3
mg=mf/3600*(ma+1) #Mass of gas fowing throgh the chimney in Kg/s
d=math.sqrt(mg/(rhog*(pi/4)*V)) #Diameter of flue gases in Kg/m**3
#Output
print("Theoretical draught produced in water column=",round(H,1),"m")
print("Theoretical draught produced in hot gas column=",round(H1,2),"m")
print("Draught is lost in friction at the grate and passing=",round(gp,2),"m")
print("Actual draught produced in hot gas column=",round(hgc,2),"")
print("Velocity of the flue gases in the chimney=",round(V,2),"m/s")
print("Density of flue gases=",round(rhog,3),"Kg/m**3")
print("Mass of gas fowing throgh the chimney=",round(mg,2),"Kg/s")
print("Diameter of flue gases=",round(d,3),"Kg/m**3")
```

In [22]:

```
#Input data
H=45 #Chimney height in m
Tg=370+273 #Temperature of flue gases in degree celsius
T1=150+273 #Temperature of flue gases in degree celsius
ma=25 #Mass of the flue gas formed in Kg/kg of a cosl fired
Ta=35+273 #The boiler temperature in degree celsius
Cp=1.004 #fuel gas
#calculation
#Efficeincy of chimney draught in %
A=(H*(((Tg/Ta)*(ma/(ma+1)))-1))/(Cp*(Tg-T1))*100
#Output
print("Efficeincy of chimney draught=",round(A,2),"%")
```