#Input data
V=5 #volume of the liquid in m**3
W=45*10**3 #weight of the liquid in KN
g=9.81 #acceleration due to gravity in m/s**2
rhow=1000 #constant value
#Calculation
m=((W)/(g)) #mass in Kg
rho=(m/V) #Mass density in kg/m**3
w=(W/V) #Weight Density in N/m**3
v=(V/m) #Specific volume in m**3/kg
S=rho/rhow #Specific gravity
#Output
print("mass= ",round(m,2),"Kg")
print("Mass density= ",round(rho,2),"kg/m**3")
print("Weight Density= ",w,"N/m**3")
print("Specific volume= ",v,"m**3/kg")
print("Specific gravity= ",round(S,4),)
#Input data
V=3*10**-3 #3l of oil in m**3
W=24 #Weight of oil in N
g=9.81 #Gravity in m/s**2
rohw=1000 #Constant value
#Calculation
m=((W)/(g)) #Mass in Kg
rho=(m/V) #Mass density in kg/m**3
w=(W/V) #Weight Density in N/m**3
v=(V/m) #Specific volume in m**3/kg
S=rho/rhow #Specific gravity
#Output
print("mass= ",round(m,3),"Kg")
print("Mass density= ",round(rho,1),"kg/m**3")
print("Weight Density= ",w,"N/m**3")
print("Specific volume= ",round(v,7),"m**3/kg")
print("Specific gravity= ",round(S,4),)
#Input data
S=0.85 #Specific gravity of a liquid
g=9.81 #Acceleration due to gravity in m/s**2(constant)
rhow=1000 #Constant value
#Calculation
#Specific gravity S=roh/rohw
rho=S*rhow #Mass density in Kg/m**3
w=rho*g #Weight Density in N/m**3
v=(1/rho) #Specific volume in m**3/kg
#Output
print("Mass densit= ",rho,"Kg/m**3")
print("Weight Density= ",w,"N/m**3")
print("Specific volume= ",round(v,6),"m**3/kg")
#Input data
dy=21*10**-3 #Horizontal plates in mm
du=1.4 #Relative velocity between the plates in m/s
mu=0.6 #Oil of viscosity 6 poise in Ns/m**2
#Calculation
tau=(mu*(du/dy)) #Shear in the oil in N/m**2
#Output
print("shear in the oil= ",round(tau,),"N/m**2")
#Input data
v=4*10**-4 #kinematic viscosity is 4 stoke inm**2/s
S=1.2 #specific gravity
dow=1000 #density of water Kg/m**3
#Calculation
rho=S*dow
vol=rho*v #viscosity of the liquid in Ns/m**2 or poise
#Output
print("viscosity of the liquid= ",round(vol,2),"Ns/m**2 ")
#Input data
S=0.9 #Specific gravity
tau=2.4 #shear stress in N/m**2
(vg)=0.125 #velocitty gradientin per s
dow=1000 #density of water Kg/m**3
#Calculation
mu=(tau)/(vg) #newton's law of viscosity in shear stress in Ns/m**2
rho=S*dow #Density of oil in Kg/m**3
v=(mu/rho) #Kinematic viscosity in m**2/s or stoke
#Output
print("newton's law of viscosity in shear stress= ",mu,"Ns/m**2")
print("Density of oil= ",rho,"Kg/m**3")
print("Kinematic viscosity= ",round(v,5),"m**2/s or stoke")
#Input data
A=6*10**-2 #Space between two square plates in mm
dy=8*10**-3 #Thickness of fluid in mm
u1=0 #Lower pate is stationary
u2=2.4 #Upper plate in m/s
F=5 #Speed of force in N
s=1.6 #Specific gravity of the liquid
dow=1000 #Density of water Kg/m**3
#(1)Calculation
du=u2-u1 #change in velocity in m/s
tau=(F/((A)**2)) #shear stress N/m**2
mu=(tau/(du/dy)) #Newton's law of viscosity in Ns/m**2 or poise
rho=s*dow #Density of oil in kg/m**3
v=(mu/rho) #kinematic viscosity is given by m**2/s or stoke
#Output
print("change in velocity= ",du,"m/s")
print("shear stress= ",round(tau,2),"N/m**2")
print("Newton's law of viscosity= ",round(mu,1),"Ns/m**2 ")
print("Density of oil= ",rho," kg/m**3")
print("kinematic viscosity= ",round(v,4),"m**2/s ")
#Input data
dy=1.5*10**-4 #Two horizontal plates are placed in m
mu=0.12 #Space between plates Ns/m**2
A=2.5 #Upper area is required to move in m**2
du=0.6 #Speed rerlated to lower plate in m/s
#(1)Calculation
tau=(mu*(du/dy)) #Shear stress N/m**2
F=tau*A #Force in N
P=F*du #Power required to maintain the speed of upper plate in W
#Output
print("Shear stress= ",round(tau,),"N/m**2")
print("Force= ",round(F,),"N")
print("Power required to maintain the speed of upper plate= ",round(P,),"W")
#Input data
mu=0.1 #Oil of viscosity used for lubricant in poise or Ns/m**2
D=0.15 #Clearance between the shaft of diameter in m
dy=3*10**-4 #Clearance in m
N=90 #Shaft rorates in rpm
pi=3.14
#Calculation
du=((pi*D*N)/60) #Tangential speed of shaft in m/s
tau=(mu*(du/dy)) #The shear force in N/m**2
#Output
print("Tangential speed of shaft= ",du,"m/s")
print("The shear force= ",tau,"N/m**2")
#Input data
import math
A=120*10**-3 #Side of square plate in mm
W=30 #Side weight in N
du=3.75 #Uniform velocity in m/s
theta=30 #Lubricated inclined plane making an angle in degree at horizontal
dy=6*10**-3 #Thickness lubricating oil film in mm
rho=800 #Lubricating oil film density in Kg/m**3
#Calculation
sin30=0.5
F=W*sin30 #Component of force in N
tau=(F/(A**2)) #Shear stress in Ns/m**2
mu=(tau/(du/dy)) #From Newton's law of Shear stress in Ns/m**2
V=(mu/rho)*10**3 #Kinematic viscosity in m**2/s
#Output
print("Component of force= ",F,"N")
print("Shear stress= ",round(tau,2)," Ns/m**2 ")
print("From Newton's law of Shear stress= ",round(mu,3),"Ns/m**2")
print("Kinematic viscosity= ",round(V,3),"m**2/s")
#Input data
Z=15 #Pressure due to column in m
S=0.85 #Oil of specific gravity
g=9.81 #Gravity
#Calculation
rho=S*10**3 #Density of oil in kg/m**3
P=rho*g*Z #Pressure in N/m**2 or kPa
#Output
print("Density of oil= ",rho,"kg/m**3")
print("Pressure= ",P,"N/m**2")
#Input data
Z1=1.5 #open tank contain water in m
Z2=2.5 #oil of specific gravity for depth in m
S=0.9 #oil of specific gravity
rho1=1000 #density of water in Kg/m**3
rho2=S*10**3 #density of oil in Kg/m**3
g=9.81 #gravity
#calculation
P=rho1*g*Z1+rho2*g*Z2 #intensity of pressure in kPa
#output
print("intensity of pressure=",P,"N/m**2")
#Input data
D1=0.2 #Diameter of pipe section 1 in m
D2=0.3 #Diameter of pipe section 2 in m
V1=15 #Velocity of water in m/s
pi=3.14
#calculation
Q=((3.14/4)*(0.2)**2)*15 #Discharge through pipe in m**3/s
V2=(((3.14/4)*(0.2)**2)*15)/((3.14/4)*(0.3)**2) #velocity of section2 in m/s
#Output
print("Discharge through pipe= ",round(Q,2),"m**3/s")
print("velocity of section2= ",round(V2,2),"m/s")
#Input data
V=13 #Velocity of water flowing throgh pipe in m/s
P=200*10**3 #Pressure of water in Kpa
Z=25 #Height above the datum in m
g=9.81
rho=1000
#Calculation
E=(P/(rho*g))+((V**2)/(2*g))+(Z) #Total energy per unit weight in m
#Output
print("Total energy per unit weight=",round(E,),"m")
#Input data
import math
S=0.85 #Specific gravity of oil
D=0.08 #Diameter of pipe in m
P=1*10**5 #Intenity of presssure in N/m**2
Z=15 #Total energy bead in m
E=45 #Datum plane in m
Mdw=1*10**3 #Mass density of water constant
g=9.81 #Gravity constant
rho=S*Mdw #Mass density of oil
pi=3.14
#calculation
rho=S*Mdw #Mass density of oil
#E=(P/(rho*g))+((V**2)/(2*g))+(Z)
V=math.sqrt((E-((P/(rho*g))+Z))*(2*g)) #Total energy per unit weight in m/s
Q=(pi/4)*D**2*V #Discharge in m**3/Kg"
#output
print("mass density of oil= ",rho,"Kg/m**3")
print("Total energy per unit weight= ",round(V,1),"m/s")
print("discharge=",round(Q,4),"m**3/Kg")
#input data
#refer figure 11
ZA=2 #water flows section A-A in m
DA=0.3 #datum pipe diameter at section A-A in m
PA=550*10**3 #pressure in kPa
VA=6 #flow velocity in m/s
ZB=18 #water flows at section B-B in m
DB=0.15 #datum pipe diameter at section B-B in m
pi=3.14 #constant
rho=1000 #constant
g=9.81 #constant
Aa=(pi/4)*(DA)**2
Ab=(pi/4)*(DB)**2
pi=3.14
#calculation
VB=((Aa*VA)/Ab) #continuity discharge equation in m/s
#bernoulli's equation Kpa
#(PA/rho*g)+(VA**2/2*g)+ZA=(PB/rho*g)+(VB**2/2*g)+ZB
PB=(((PA/(rho*g))+(VA**2/(2*g))+ZA)-((VB**2/(2*g))+ZB))*(rho*g)
#output
print("continuity discharge equation= ",VB,"m/s")
print("bernoulli's equation= ",round(PB,1),"pa")
#input data
#refer figure 12
Q=0.04 #Water flows at rate in m**2/s
DA=0.22 #Pipe diameter at section A in m
DB=0.12 #Pipe diameter at section B in m
PA=400*10**3 #Intensity of pressure at setion A in kPa
PB=150*10**3 #Intensity of pressure at setion B in kPa
pi=3.14 #Pi constant
g=9.81 #Gravity constant
rho=1000
#calculation
VA=Q/(pi/4*(DA)**2) #contuity equation for discharge
VB=Q/(pi/4*(DB)**2) #bernoulli's equation for discharge
#Z=ZB-ZA
Z=(PA/(rho*g))+(VA**2/(2*g))-(PB/(rho*g))-(VB**2/(2*g))
#output
print("contuity equation for discharge= ",round(VA,3),"m**3")
print("contuity equation for discharge= ",round(VB,3),"m**3")
print("bernoulli's equation for discharge= ",round(Z,2),"m")
#Input data
L=200 #length of pipe in m
D1=1 #Diameter at high end in m
D2=0.4 #Diameter at low end in m
P1=50*10**3 #Pressure at high end in kPa
Q=4000 #Rate of water flow l/min
S=1 #Slope of pipe 1 in 100
Z2=0 #Datum line is passing through the center of the low end,therefore
pi=3.14
#calculation
Q=(4000*10**-3)/60 #rate of water flow l/min in m**3/s
Z1=1/100*L #slope of pipe 1 in 100 is in m
#Q=A1*V1=A2V2 #continuity eqation ,discharge
V1=Q/((pi/4)*(D1**2))#in m**3
V2=Q/((pi/4)*(D2**2))#in m**3
#bernoulli's equation
P2=(((((P1/(rho*g))+(V1**2/(2*g))+Z1)-(V2**2/(2*g))-Z2))*(rho*g))*10**-3
#output
print("rate of water flow= ",round(Q,4),"m**3/s")
print("slope of pipe= ",Z1,"m")
print("continuity eqation ,discharge= ",round(V1,5),"m**3")
print("continuity eqation ,discharge= ",round(V2,4),"m**3")
print("bernoulli's equation for discharge= ",round(P2,2)," Kpa")
#Input data
import math
L=36 #Length of pipe in m
D1=0.15 #Diameter at upper side in m
D2=0.3 #Diameter at lower side in m
sin30=0.5
theta=math.sin(30) #Pipe slope upward at angle in degree
V1=2 #Velocity of water at smaller section in m/s
pi=3.14 #Pi constant
rho=1000 #Roh constant
g=9.81 #Gravity constant
#calculation
#datum line is passing through the center of the low end,therefore
Z1=0
Z2=Z1+L*(0.5) #pipe inclined 30 degree,therefore in m
#Q=A1*V1=A2*V2 continuity eqation ,discharge
V2=(pi/4*(D1**2)*2)/(pi/4*(D2**2))
#Z=P1-P2 bernoulli's equation
Z=((((-V1**2)/(2*g))+((V2**2)/(2*g))-Z1+Z2)*(rho*g))*10**-3
#output
print("pipe inclined 30 degree,therefore Z2=",Z2,"m")
print("continuity eqation ,discharge V2=",V2,"m/s")
print("#bernoulli's equation Z=",round(Z,1),"Kpa")
#Input data
D1=0.25 #Diameter at inlet in m
D2=0.175 #Diameter at outlet in m
P1=450*10**3 #Intensity of pressure at inlet in kPa
P2=200*10**3 #Intensity of pressure at outlet in kPa
pi=3.14 #pi constant
rho=1000 #Roh constant
g=9.81 #Gravity constant
Z1=Z2
#Calculation
#A1*V1=A2*V2 Continuity eqation in V1
V2=((pi/4)*(D1**2))/((pi/4)*(D2**2))
#Z=V2**2-V1**2 Bernoulli's equation in m/s
Z=-(((P2/(rho*g))-(P1/(rho*g)))*(2*g))
X=Z/((V2**2)-1)
V1=math.sqrt(X)
Q=(pi/4)*(D1**2)*V1 #Flow rate Water in m**3/Kg
#Output
print("Continuity eqation= ",round(V2,2),"V1")
print("Bernoulli's equation= ",Z,"m/s")
print("V1=",round(V1,2),"")
print("Flow rate Water= ",round(Q,3),"m**3/Kg")
#Input data
L=300 #Length of pipe in m
D1=0.9 #Diameter at higher end in m
D2=0.6 #Diameter at lower end in m
S=0.85 #Specific gravity
Q=0.08 #Flow in l/s
P1=40*10**3 #Pressure at higher end in kPa
pi=3.14 #pi constant
rho=1000 #Roh constant
g=9.81 #Gravity constant
slop=1/50 #1 in 50
#Calculation
#Datum line is passing through the center of the low end,therefore
Z2=0
Z1=slop*L
#Q=A1*V1=A2*V2 Continuity eqation
V1=Q/((pi/4)*(D1**2)) #Frome continuity eqation, discharge
V2=Q/((pi/4)*(D2**2)) #Frome continuity eqation, discharge
#Bernoulli's equation
P2=(((((P1/(rho*S*g))+(V1**2/(2*g))+Z1)-(V2**2/(2*g))+Z2))*(S*rho*g))*10**-3
#Output
print("Z1=",Z1,"m")
print("continuity eqation, discharge V1=",round(V1,5),"m**3")
print("continuity eqation, discharge V2=",round(V2,5),"m**3")
print("bernoulli's equation= ",round(P2,),"KPa")