Chapter 13 : Thermodynamics in Phase Equilibria

Example 13.1 Page No : 238

In [1]:
import math 

#Given
#N2 obeys the relation : Z = 1+(2.11*10**-4*P)
Tc = 126;#Critical temperature in K
Pc = 33.5;#Critical pressure in atm
T = 373;#in K
P = 100;#in atm

#To Calculate the fugacity of N2 at 373K and 100 atm
#(i)Umath.sing the Z relation given above
#From equation 13.12 (page no 239)
phi = math.e**(2.11*10**-4*(P-0));#fugacity coefficient
f = phi*P;
print "i)The fugacity of N2 umath.sing the given Z relation is %f atm"%(f);

#(ii)Umath.sing the fugacity chart given in figure A.2.9
Pr = P/Pc;#Reduced pressure in atm
Tr = T/Tc;#Reduced temperature in K
#From figure A.2.9,
phi = 1.04
f = phi*P;
print " ii)The fugacity of N2 umath.sing the fugacity chart is %f atm"%(f);
#end
i)The fugacity of N2 umath.sing the given Z relation is 102.132418 atm
 ii)The fugacity of N2 umath.sing the fugacity chart is 104.000000 atm

Example 13.2 Page No : 241

In [2]:
import math 

#Given
P1 = 50*1.03*10**4;#Initial pressure in Kgf/sq m
T = 373.0;#Temperature in K
P2 = 1.03*10**4;#Final pressure in Kgf/sq m
V = 0.001*18;#Volume in cubic meter
R = 848.0;#gas consmath.tant in m Kgf/Kgmole K

#To Calculate the fugacity of liquid water
#From equation 13.13(page no 240)
del_u = (V/(R*T))*(P2-P1);#del_u = ln(f2/f1); Change in chemical potential
f1 = P2;#in Kgf/sq m
f2 = f1*(math.e**del_u);
print "The fugacity of the liquid water at 50 atm is %4.2e Kgf/sq m"%(f2);
#end
The fugacity of the liquid water at 50 atm is 1.00e+04 Kgf/sq m

Example 13.3 Page No : 242

In [3]:
%matplotlib inline
import math
import matplotlib.pyplot as plt
import numpy

#Given
x1 = 0.1;#mole fraction of methane
x2 = 0.9;#mole fraction of propane
P = [28.1,31.6,35.1];#Pressure in Kgf/sq cm are
K1 = [5.8,5.10,4.36];#Vapourisation consmath.tants of methane at the corresponding presssures
K2 = [0.61,0.58,0.56];#Vapourisation consmath.tants of propane at the correspondig pressures

#To Calculate the bubble point pressure of the solution
#From equation 13.27 (page no 245)
y1 = []
y2 = []
y = []
for i in range(0,3):
    y1.append(K1[i]*x1);#mole fraction of methane in the vapour phase
    y2.append(K2[i]*x2);#mole fraction of propane in the vapour phase
    y.append(y1[i]+y2[i]);#sum of the mole fraction in the vapour phase
    

plt.plot(P,y)
plt.title("y vs pressure")
plt.xlabel("P")
plt.ylabel("y")
plt.show()
P1 = numpy.interp(1,y,P)
print "The bubble point pressure of the solution is %f Kgf/sq cm"%(P1);
#end
The bubble point pressure of the solution is 35.100000 Kgf/sq cm

Example 13.4 Page No : 244

In [4]:
import math 

#Given
T = [80.6,79.0,77.3,61.4];#Various temperature in deg cel
x1 = [0.0,15.0,29.0,100.0];#mole fraction of CHCl3 in liquid phase
y1 = [0.0,20.0,40.0,100.0];#mole fraction of CHCl3 in vapour phase
P1 = [1370,1310,1230,700];#Vapour pressure of CHCl3 in mm Hg
P = 760.0;#Total pressure in mm Hg

#To Calculate the equilibrium data i.e y/x and compare with the experimental values
#From equation 13.27 (page no 245);K = y1/x1 = Pi/P
print "Temperature    Experimental   Calculated";
Ke_x = []
K_c = []
for i in range(0,4):
    print " %f"%(T[i]),
    if x1[i] == 0 :
        print "     Not defined",
        Ke_x.append(0)
    else:
        Ke_x.append(y1[i]/x1[i]);
        print "        %f"%(Ke_x[i]),
    K_c.append(P1[i]/P);
    print "      %f"%(K_c[i])

if Ke_x[i] == K_c[i]:
    print ' The liquid solution is perfect';
else:
    print " The liquid solution is imperfect";
#end
Temperature    Experimental   Calculated
 80.600000      Not defined       1.802632
 79.000000         1.333333       1.723684
 77.300000         1.379310       1.618421
 61.400000         1.000000       0.921053
 The liquid solution is imperfect

Example 13.6 Page No : 246

In [5]:
#Given
x1 = 0.1;#Mole fraction of dichloromethane (CCl2H2)
x2 = 0.9;#Mole fraction of methyl acetate (C3H6O2)
M1 = 85.0;#Molecular weight of CCl2H2
M2 = 74.0;#Molecular weight of C3H602
D1 = 1.3163;#Density of CCl2H2 in gm/cc
D2 = 0.9279;#Density of C3H6O2 in gm/cc

#To Calculate the volume of 10% dichloromethane solution
V1 = M1/D1;#Specific volume of pure CCL2H2 in cc/gmole
V2 = M2/D2;#Specific volume of C3H6O2 in cc/gmole
#From equation 13.62(page no 256)& 13.78 (page no 257)
V_e = x1*x2*(1.2672-0.771*x1);#excess volume in cc/gmole
V = V1*x1+V2*x2+V_e;
print "The volume of 10 percent dichloromethane is %f cc/gmole"%(V);
#end
The volume of 10 percent dichloromethane is 78.339579 cc/gmole

Example 13.7 Page No : 249

In [6]:
%matplotlib inline
import math
import matplotlib.pyplot as plt
import numpy

#Given
x_T = 0.957;#mole fraction of Toluene
x_D = 0.043;#mole fraction of 1,2-dichloroethane
t = [90, 100, 110];#temperature in deg cel
R = 1.98;#gas consmath.tant in Kcal/Kgmole K

#To Calculate the vapour pressure of the solution, bubble point at 686 mm Hg and the vapour composition at equilibrium,
#compare the experimental value of 91.2% toluene in vapour with the calculated value & calculate the free energy of mixing
#(1)Calculation of vapour pressure
print "1Tempdeg cel    P_TmmHg          P_DmmHg           P_smmHg";
P_T = []
P_D = []
P_s = []
for i in range(0,3):
    P_T.append(10**(6.95464-(1344.8/(219.482+t[i]))));#Given as equation(a)(page no 260)
    P_D.append(10**(7.03993-(1274.079/(223+t[i]))));#Given as equation(b)(page no 260)
    P_s.append(x_T*P_T[i]+x_D*P_D[i]);#pressure of the solution in mm Hg
    print '   %f'%(t[i]),
    print '          %f'%(P_T[i]),
    print '        %f'%(P_D[i]),
    print '         %f'%(P_s[i])

#(2)Calculation of bubble point and comparison of values
plt.plot(t,P_s)
plt.title("t vs P_s")
plt.xlabel("t")
plt.ylabel("P_s")
plt.show()
T = numpy.interp(686,P_s,t)
P = 686.0;#pressure of solution in mm Hg
y_T_e = 0.912;#experimental value of mole fraction of toluene
#From the graph we found that the temperature at P = 686 mm Hg is
#t = 105.3;#in deg cel
print '2)The bubble point is %f deg cel'%(T);
#From equation (a)(page no 260)
P_T = 10**(6.95464-(1344.8/(219.482+T)));#vapour pressure of Toluene in mmHg
#From equation 13.27 (page no 245)
y_T_c = (x_T*P_T)/P;
y_D_c = 1-y_T_c;
print '  The vapour composition of toluene is %f'%(y_T_c);
print '  The vapour composition of 1,(2-dichloroethane is %f'%(y_D_c);
e = ((y_T_e-y_T_c)/y_T_e)*100;
print ' The percentage error is %f percent'%(e);

#(3)Calculation of free energy
del_F = R*(T+273)*((x_T*math.log(x_T))+(x_D*math.log(x_D)));
print '3)The free energy of mixing is %f Kcal/Kgmole'%(del_F);
#end
1Tempdeg cel    P_TmmHg          P_DmmHg           P_smmHg
   90.000000           406.737847         931.944531          429.321734
   100.000000           556.321921         1245.698588          585.965118
   110.000000           746.589152         1636.315096          784.847367
2)The bubble point is 105.029855 deg cel
  The vapour composition of toluene is 0.901898
  The vapour composition of 1,(2-dichloroethane is 0.098102
 The percentage error is 1.107696 percent
3)The free energy of mixing is -132.756668 Kcal/Kgmole

Example 13.8 Page No : 252

In [7]:
import math 

#Given
#Consider the diagram shown in page no 263
w1 = 100.0;#weight of LiBr entered as feed in the evaporator per hour in Kg
x1 = 0.45;#weight  fraction of LiBr entered as feed
x2 = 0.0;#weight fraction of steam in the LiBr soln
x3 = 0.65;#weight fraction of LiBr formed as product
H1 = -39.0;#Enthalpy of 45% solution at 25 deg cel in Kcal/Kg
H3 = -4.15;#Enthalpy of 65% solution at 114.4 deg cel in Kcal/Kg
H2 = 649.0;#Enthalpy of superheated steam at 100 mmHg and 114.4 deg cel in Kcal/Kg

#To Calculate the heating load required for the process
#According to material balance
w3 = (w1*x1)/x3;#weight of LiBr solution formed after evaporation per hour in Kg
w2 = w1-w3;# weight of steam formed in Kg/hr
#According to energy balance
Q = (w2*H2)+(w3*H3)-(w1*H1);
print 'The heat that has to be supplied for this concentration process is %f Kcal/hr'%(Q);
#end
The heat that has to be supplied for this concentration process is 23581.923077 Kcal/hr

Example 13.12 Page No : 253

In [8]:
%matplotlib inline
import math
import matplotlib.pyplot as plt
import numpy

#Given
x_A = [0.0, 0.0435, 0.0942, 0.1711, 0.2403, 0.3380, 0.5981];#mole fraction of acetic acid
p_A = [0.0, 17.2, 30.5, 46.5, 57.8, 69.3, 95.7];#partial pressure of acetic acid in mmHg
P_T1 = 202.0;#vapour pressure of toulene in mmHg
P_T2_ex = 167.3;#experimental partial pressure in mmmHg

#To Calculate the partial pressure of toulene in the solution and check with the experimental value
#From the equation 13.95,
#ln(P_T2/P_T1) = -intg(x_A/((1-x_A)*p_A))
x = []
for i in range(0,7):
    if (p_A[i] != 0):
        x.append((x_A[i]/((1-x_A[i])*p_A[i]))*10**4)
    else:
        x.append(0)


plt.plot(x,p_A)
plt.title(" ")
plt.xlabel("(x_A/((1-x_A)*p_A))*10**4")
plt.ylabel("p_A")
plt.show()
      
#Area of the graph drawn is
A = -0.138;
P_T2 = (math.e**A)*P_T1;
e = ((P_T2-P_T2_ex)*100)/P_T2_ex;
print 'The partial pressure of toulene is %f mmHg'%(P_T2);
print ' This deviates %i percent from the reported value'%(e);
#end
The partial pressure of toulene is 175.961936 mmHg
 This deviates 5 percent from the reported value

Example 13.13 Page No : 254

In [16]:
%matplotlib inline

import math
import matplotlib.pyplot as plt
import numpy
from numpy.linalg import solve

#Given
P = 760.0;#pressure at maximum boiling azeotrope of A and B in mmHg
x_A = 0.6;#mole fraction of A in liquid phase
x_B = 0.4;#mole fraction of B in liquid phase
p_A = 600.0;#vapour pressure of A at 90 deg cel
p_B = 300.0;#vapour pressure of B at 90 deg cel

#To Check whether the activity coefficient of the solution can be represented by the Margules equation
y_A = P/p_A;#Activity coefficient of A
y_B = P/p_B;#Activity coefficient of B
#From the Margules equation or equation (a) & (b)
U = [[((x_B**2)-(2*(x_B**2)*x_A)), (2*(x_B**2)*x_A)], [(2*(x_A**2)*x_B), ((x_A**2)-(2*(x_A**2)*x_B))]];
V = [math.log(y_A), math.log(y_B)];
W = solve(U,V);
#Now the value of consmath.tants A and B in equations(a)&(b) are given as

A = W[0];
B = W[1];
#let us assume 
x_A = [0.0,0.2,0.4,0.6,0.8,1.0];
x_B = [1.0,0.8,0.6,0.4,0.2,0.0];
#C = lny_A; D = lny_B; E = ln(y_A/y_B)
C = []
D = []
E = []
for i in range(6):
    C.append((x_B[i]**2)*(2*(B-A)*x_A[i]+A));
    D.append((x_A[i]**2)*(2*(A-B)*x_B[i]+B));
    E.append(C[i]-D[i]);
    
plt.plot(x_A,E)
plt.title(" ")
plt.xlabel("x_A")
plt.ylabel("ln(y_A/y_B)")
plt.show()
#Since the graph drawn is approximately symmetrical.Thus it satisfies the Redlich-Kister Test
print 'The actvity coefficients of the system can be represented by Margules equation';
#end
The actvity coefficients of the system can be represented by Margules equation

Example 13.14 Page No : 259

In [17]:
%matplotlib inline
import math
import matplotlib.pyplot as plt
import numpy

#Given
P = 760.0#Total pressure of the mixture in mmHg
T = [80, 90, 95, 100];#Temperature in deg celsius
P1 = [87.4, 129.0, 162.0, 187.0];#vapour pressure of 1,1,2,2-tetrachloroethane in mmHg
P2 = [356, 526, 648, 760];#Vapour pressure of water in mmHg

#To Calculate the composition of the vapour evolved
plt.plot(T,P1,"green",T,P2,"red")
plt.title(" ")
plt.xlabel("Temp in deg cel")
plt.ylabel("Vapour pressure in mmHg")
plt.show()
#From the graph we conclude that at 93.8 deg cel
P1 = 155.0;#in mm Hg
P2 = 605.0;#in mm Hg
y_1 = P1/P;
y_2 = P2/P;
print 'Mole fraction of 1,(1,(2,(2-tetrachloroethane in vapour is %f'%(y_1);
print ' Mole fraction of water in vapour is %f'%(y_2);
#end
Mole fraction of 1,(1,(2,(2-tetrachloroethane in vapour is 0.203947
 Mole fraction of water in vapour is 0.796053

Example 13.15 Page No : 263

In [18]:
%matplotlib inline
import math
import matplotlib.pyplot as plt
import numpy

#Given
T = [146.2, 142.3, 126.1, 115.9, 95.0, 98.0, 100.0];#Temperature in deg cel
P1 = [760.0, 685.0, 450.3, 313.0];#Vapour pressure of 1,1,2,2-tetrachloroethane at the coressponding temperature in mm Hg
P2_5 = 648.0;#Vapour pressure of water at 95 deg cel in mm Hg
P2_6 = 711.0;#Vapour pressure of water at 98 deg cel in mm Hg
P = 760.0;#Total pressure of mixture in mm Hg

x1 = [0, 0, 0, 0, 0, 0, 0];
#To plot a graph between temperature and vapour phase composition
for i in range(0,4):
    x1[i] = P1[i]/P;#mole fraction of 1,1,2,2-tetrachloroethane
x2_5 = P2_5/P;#mole fraction of water at 95 deg cel
x2_6 = P2_6/P;#mole fraction of water at 98 deg cel
x1[4] = 1-x2_5;
x1[5] = 1-x2_6;

plt.plot(x1,T)
plt.title("")
plt.xlabel("mole fraction of 1,1,2,2-tetrachloroethane")
plt.ylabel("Temperature in deg cel")
plt.show()
print 'The required graph has been ploted in the graphic window';
#end
The required graph has been ploted in the graphic window

Example 13.16 Page No : 266

In [19]:
import math 

#Given
#B = -(1.203*10**10)*(T**2.7); second virial coefficient, T is in K
#math.log P = 6.95464-(1344.8/(219.482+t))...(a);Vapour pressure of toulene
t = 107.2;#Temperature in deg cel
T = t+273.16;#in K
H_ex = 7964.0;#experimental value of heat of vapourisation in Kcal/Kgmole
d = 800.0;#density of liquid toulene in Kg/cubic meter
R = 1.98;#gas consmath.tant in Kcal/Kgmole K
M = 92.14;#molecular weight of toulene

#To Calculate the heat of vapourization of toulene by umath.sing ideal gas law, second virial coefficient but neglecting vl and including vl
#From equation (a), let K = dmath.logP/dT
K = 1344.8/(219.482+t)**2;
#(i)Umath.sing ideal gas behaviour
#From equation 13.112(page no 286)
H_c = (2.303*R*(T**2))*K;
print 'i)The heat of vapourization  umath.sing ideal gas behaviour is %f Kcal/Kgmole'%(H_c);
D = ((H_c-H_ex)/H_c)*100;
print '    The deviation is %f percent'%(D);

#(ii)Umath.sing second virial coeff but neglecting vl
#From equation(a)
P = 10**(6.95464-1344.8/(219.482+t));#in mm Hg
P1 = P*1.033*10**4/760;#in Kgf/sq m
B = -((1.203*10**10)/(T**2.7))*10**-3;#in cubic meter/Kgmole
#From equation 13.111 (page no 286) neglecting vl,
l = (R*T)+((B*P1)/427);#in Kcal/Kgmole
H_c = K*2.303*T*l;
print 'ii)The heat of vapourisation umath.sing second virial coefficient but neglecting vl is %f Kcal/Kgmole'%(H_c);
D = ((H_c-H_ex)/H_c)*100;
print '    The deviation in this case is %f percent'%(D);

#(iii)Umath.sing second virial coeff including vl
vl = M/d;#Liquid specific volume in cubic meter/Kgmole
n = P1*vl/427;#in Kcal/Kgmole
H_c = K*2.303*T*(l-n);
print 'iii)The heat of vapourisation umath.sing second virial coefficient including vl is %f Kcal/Kgmole'%(H_c);
D = ((H_c-H_ex)/H_c)*100;
print '     The deviation in this case is %f'%(D);
#end
i)The heat of vapourization  umath.sing ideal gas behaviour is 8312.967730 Kcal/Kgmole
    The deviation is 4.197872 percent
ii)The heat of vapourisation umath.sing second virial coefficient but neglecting vl is 7998.487742 Kcal/Kgmole
    The deviation in this case is 0.431178 percent
iii)The heat of vapourisation umath.sing second virial coefficient including vl is 7970.612948 Kcal/Kgmole
     The deviation in this case is 0.082967

Example 13.17 Page No : 269

In [20]:
import math 

#Given
H_ex = 539.0;#Heat of vapoization of water in Kcal/Kg
Tc = 647.0;#Critical temperature in K
Pc = 218.0;#Critical pressure in atm
Tb = 373.0;#Boiling point of water in K
t = 100.0;#temperature in deg cel
M = 18.0;#Molecular weight of water
P = 1.0;#pressure at boiling point in atm
P1 = 1.033*10**4;#pressure in Kgf/sq m

#To Calculate the heat of vapourisation of water by Vishwanath and Kuloor method and by Riedel's method and compare with the experimental value
#(i) Umath.sing Vishwanath and Kuloor method
H_c = (4.7*Tc*((1-(P/Pc))**0.69)*math.log(P/Pc))/((1-(Tc/Tb))*18);
print 'i)The heat of vapourisation of water umath.sing Vishwanath and Kuloor method is %f Kcal/Kg'%(H_c);
D = (H_c-H_ex)*100/H_c;
print '    The deviation occurs umath.sing this method is %f percent'%(D);

#(ii)Umath.sing Riedel's method
H_c = (Tb*2.17*(math.log(218)-1))/((0.93-(Tb/Tc))*18);
print 'ii)The heat of vapourisation of water umath.sing Riedel method is %f Kcal/Kg'%(H_c);
D = (H_c-H_ex)*100/H_c;
print '    The deviation occurs umath.sing this method is %f percent'%(D);

#(iii)By umath.sing given vapour equation; math.logP = 8.2157-(2218.8537/(273.16+t)), t is in deg cel
#From steam table,
Vv = 1.673;#in cubic meter/Kg
Vl = 0.001;#in cubic meter/Kg
H_c = (2218.8/(273.16+t)**2)*(2.3*Tb*P1*(Vv-Vl)/427);
print 'iii)The heat of vapourisation umath.sing the given vapour equation is %f Kcal/Kg'%(H_c);
D = (H_c-H_ex)*100/H_c;
print '    The deviation occurs umath.sing this method is %f percent'%(D);
#end
i)The heat of vapourisation of water umath.sing Vishwanath and Kuloor method is 1234.397750 Kcal/Kg
    The deviation occurs umath.sing this method is 56.334982 percent
ii)The heat of vapourisation of water umath.sing Riedel method is 557.743828 Kcal/Kg
    The deviation occurs umath.sing this method is 3.360652 percent
iii)The heat of vapourisation umath.sing the given vapour equation is 552.934102 Kcal/Kg
    The deviation occurs umath.sing this method is 2.520029 percent

Example 13.18 Page No : 270

In [21]:
import math 

#Given
T1 = 273-87.0;#temp in K
T2 = 273.0;#temp in K
H1 = 115.0;#Latent heat of saturated ethane at 1 atm and -87 deg cel in Kcal/Kg
H2_ex = 72.44;#Experimental value of latent heat at 0 deg cel in Kcal/Kg
Tc = 306.0;#Critical temperature in K
M = 30.0;#Molecular weight of ethane

#To Calculate the latent heat of saturated ethane at 0 deg cel
Tr1 = T1/Tc;#reduced temp in K
Tr2 = T2/Tc;#reduced temp in K
#(i)Umath.sing Waton's method:
H2_c = H1*((1-Tr2)/(1-Tr1))**0.38;
print 'i)The latent heat of saturated ethane at 0 deg cel umath.sing Waton method is %f Kcal/Kg'%(H2_c);
D = (H2_ex-H2_c)*100/H2_ex;
print '   The deviation occurs umath.sing this method is %f percent'%(D);

#(ii)Umath.sing Vishwanath and Kuloor method
#From equation 13.117 (page no 289)
n = (0.00133*(H1*M/T1)+0.8794)**(1/0.1);
H2_c = H1*((1-Tr2)/(1-Tr1))**n;
print 'ii)The latent heat of saturated ethane at 0 deg cel umath.sing Vishwanath and Kuloor method is %f Kcal/Kg'%(H2_c);
D = (H2_ex-H2_c)*100/H2_ex;
print '   The deviation occurs umath.sing this method is %f percent'%(D);
#end
i)The latent heat of saturated ethane at 0 deg cel umath.sing Waton method is 70.411608 Kcal/Kg
   The deviation occurs umath.sing this method is 2.800099 percent
ii)The latent heat of saturated ethane at 0 deg cel umath.sing Vishwanath and Kuloor method is 71.809846 Kcal/Kg
   The deviation occurs umath.sing this method is 0.869898 percent

Example 13.19 Page No : 272

In [23]:
import math 

#Given
H_s_ex = 32.7;#experimental value of latent heat of the solution in KJ/mole
x1 = 0.536;#mole percent of toulene in the solution
x2 = 1-0.536;#mole percent of 1,1,1-trichloroethane in the solution
H1 = 33.34;#Latent heat of toulene in KJ/gmole
H2 = 29.72;#Latent heat of 1,1,1-trichloroethane in KJ/gmole
He = 0.0;#excess enthalpy is neglected
Cp1 = 39.55;#Specific heat of toulene in cal/gmole deg cel
Cp2 = 24.62;#Specific heat of 1,1,1-trichloroethane in cal/gmole deg cel
T_D = 100.0;#dew point temperature in deg cel
T_B = 92.6;#bubble point temperature in deg cel

#To calculate the latent heat of the solution and compare it with the one which calculated from the given vapour pressure equation
#(i)Calculation of latent heat of the solution
#From equation 13.118 (page no 291)
H_s = H1*x1+H2*x2+He+(Cp1*x1+Cp2*x2)*10**-3*4.17*(T_D-T_B);
print 'i)The latent heat of the solution is %f KJ/gmole'%(H_s);
D = ((H_s_ex-H_s)*100)/H_s_ex;
print '    The deviation occurs using this method is %f percent'%(D);

#(ii)Calculation of latent heat from the vapour pressure equation
#From equation (a) (page no 291)
K = 1657.599/((273.16+5)**2);
H_s = (K*2.303*8.314*(273.16+5)**2)*10**-3;
print 'ii)The latent heat of the solution is %f KJ/gmole'%(H_s);
D = ((H_s_ex-H_s)*100)/H_s_ex;
print '    The deviation occurs using this method is %f percent'%(D);
#end
i)The latent heat of the solution is 32.666984 KJ/gmole
    The deviation occurs using this method is 0.100965 percent
ii)The latent heat of the solution is 31.738283 KJ/gmole
    The deviation occurs using this method is 2.941029 percent