# Chapter 24 : Fluid-Fluid Reactors: Design¶

## Example 24.1 pageno : 551¶

In [2]:
import math

# Variables
kag_a = 0.32;                  # mol/hr.m**3 Pa
kal_a = 0.1                    # hr
HA = 12.5                      # Pa.m**3/mol
Fg = 10.**5                    # mol/hr.m**2
Fl = 7.*10**5                  # mol/hr.m**2
Ct = 56000.;                    #mol/m3
P = 10.**5;                     #Pa

# Calculations
inv_Kag_a = 3.125+HA/(kal_a);
Gfilm_res = (3.125)/inv_Kag_a;
Lfilm_res = (HA/(kal_a))/inv_Kag_a;
Kag_a = 1/inv_Kag_a;
d = 20;
def f9(dp):
return 1./20

# Results
print " The height of the tower required for countercurrent operartions is %.1f "%(h),
print "m"

 The height of the tower required for countercurrent operartions is 512.5  m


## Example 24.2 pageno : 554¶

In [4]:
import math

# Variables
Fg = 10.**5;
P = 10.**5;
Fg_by_Acs = 10.**5              #(Fg/Acs)
PA1 = 20;PA2 = 100.;
kag_a = 0.32;

# Calculations
def f10(PA):
return 1./(0.32*PA)

# Results
print " The height of the tower is %.2f "%(h),
print "m"

 The height of the tower is 5.03  m


## Example 24.3 pageno : 555¶

In [5]:
import math

# Variables

# from example 24.2
Fg = 10.**5;
P = 10.**5;
PA1 = 20.
PA2 = 100.;
HA = 12.5;
kaga = 0.32
kla = 0.1;

# Calculations
rA = 420./((1./kaga)+(HA/kla));

def f8(PA):
return 1./rA

# Results
print "The height of the tower is %.1f"%(h),
print "m"

The height of the tower is 24.4 m


## Example 24.4 page no : 557¶

In [5]:
import math

# Variables

# from example 24.2
PA1 = 20.
PA2 = 100.          #Pa
Fg_by_Acs = 10.**5;
P = 10.**5;
HA = 12.5;
kaga = 0.32
kla = 0.1;
PA = 39.5           #Pa

# Calculations
def f11(P):
return 1./(kaga*P)

def f22(P):
return (1/kaga+HA/kla)/1620

# Results
print "The height of the tower is %.2f"%(h),
print "m"

The height of the tower is 6.91 m


## Example 24.5 pageno : 558¶

In [8]:
import math

# Variables

# from 24.2
Fg = 10.**5;
P = 10.**5;
Fg_by_Acs = 10.**5          #(Fg/Acs)
PA1 = 20.
PA2 = 100.
kag_a = 0.32;

# Calculations
def f0(PA):
return 1./(PA/3.125)

# Results
print " The height of the tower is %.2f "%(h),
print "m"

 The height of the tower is 5.03  m


## Example 24.6 pageno : 560¶

In [11]:
import math

# Variables
kag_a = 0.72;              # mol/hr.m**3 Pa
kal_a = 144.;              # hr**-1
HA = 1000.;                # Pa m**3/mol
Fg = 9000.                  #mol/hr
fl = 0.9
b = 1
Vr = 1.62                   #m3
DA = 3.6*10**-6             #m2/hr
a = 100.                    #m2/m3
k = 2.6*10**5;              #m3/mol.hr
DB = DA
P = 10**5
PA = 1000.                  #Pa
kal = kal_a/a;
#At the start
CBo = 555.6;

# Calculations
Mh = (math.sqrt(DB*k*CBo))/kal;
#Min value of EAi
Ei = 1+(CBo*HA/PA);
if Ei>Mh:
E = Mh;

rA1 = PA/((P*Vr/Fg)+(1/kag_a)+(HA/(kal_a*E))+(HA/(k*fl*CBo)));
#At the end
CBf = 55.6;
Mh = (math.sqrt(DB*k*CBf))/kal;
#Min value of EAi
Ei = 1+(CBf*HA/PA);
if Ei>Mh:
E = Mh;

rA2 = PA/((P*Vr/Fg)+(1/kag_a)+(HA/(kal_a*E))+(HA/(k*fl*CBf)));
#Average rate of reaction
rA_avg = (rA1+rA2)/2;

def f7(CB):
return 1./rA_avg

# Results
print " Part a"
print " The run time needed is %.2f"%t,
print "hr"
#The min time required is
tmin = Vr*(CBo-CBf)/(Fg*(PA/(P-PA)));
print " The minimum time required is %.2f"%(tmin),
print "hr"
#Fraction of reacmath.tant which passes through the math.tank unreacted is
f = (t-tmin)/tmin;
print " Part b"
print " Fraction of reacmath.tant which passes through the math.tank unreacted is %.3f"%(f)

 Part a
The run time needed is 9.13 hr
The minimum time required is 8.91 hr
Part b
Fraction of reacmath.tant which passes through the math.tank unreacted is 0.025

In [ ]: