#importing modules
import math
from __future__ import division
#Variable declaration
El=10**-2*50; #energy loss(J)
H=El*60; #heat produced(J)
d=7.7*10**3; #iron rod(kg/m**3)
s=0.462*10**-3; #specific heat(J/kg K)
#Calculation
theta=H/(d*s); #temperature rise(K)
#Result
print "temperature rise is",round(theta,2),"K"
#importing modules
import math
from __future__ import division
#Variable declaration
e=1.6*10**-19; #charge(coulomb)
new=6.8*10**15; #frequency(revolutions per second)
mew0=4*math.pi*10**-7;
R=5.1*10**-11; #radius(m)
#Calculation
i=round(e*new,4); #current(ampere)
B=mew0*i/(2*R); #magnetic field at the centre(weber/m**2)
A=math.pi*R**2;
d=i*A; #dipole moment(ampere/m**2)
#Result
print "magnetic field at the centre is",round(B),"weber/m**2"
print "dipole moment is",round(d*10**24),"*10**-24 ampere/m**2"
#importing modules
import math
from __future__ import division
#Variable declaration
chi=0.5*10**-5; #magnetic susceptibility
H=10**6; #field strength(ampere/m)
mew0=4*math.pi*10**-7;
#Calculation
I=chi*H; #intensity of magnetisation(ampere/m)
B=mew0*(I+H); #flux density in material(weber/m**2)
#Result
print "intensity of magnetisation is",I,"ampere/m"
print "flux density in material is",round(B,3),"weber/m**2"
#importing modules
import math
from __future__ import division
#Variable declaration
B=9.27*10**-24; #bohr magneton(ampere m**2)
a=2.86*10**-10; #edge(m)
Is=1.76*10**6; #saturation value of magnetisation(ampere/m)
#Calculation
N=2/a**3;
mew_bar=Is/N; #number of Bohr magnetons(ampere m**2)
mew_bar=mew_bar/B; #number of Bohr magnetons(bohr magneon/atom)
#Result
print "number of Bohr magnetons is",round(mew_bar,2),"bohr magneon/atom"
#importing modules
import math
from __future__ import division
#Variable declaration
mew0=4*math.pi*10**-7;
H=9.27*10**-24; #bohr magneton(ampere m**2)
beta=10**6; #field(ampere/m)
k=1.38*10**-23; #boltzmann constant
T=303; #temperature(K)
#Calculation
mm=mew0*H*beta/(k*T); #average magnetic moment(bohr magneton/spin)
#Result
print "average magnetic moment is",round(mm*10**3,2),"*10**-3 bohr magneton/spin"
#importing modules
import math
from __future__ import division
#Variable declaration
A=94; #area(m**2)
vy=0.1; #value of length(weber/m**2)
vx=20; #value of unit length
n=50; #number of magnetization cycles
d=7650; #density(kg/m**3)
#Calculation
h=A*vy*vx; #hysteresis loss per cycle(J/m**3)
hs=h*n; #hysteresis loss per second(watt/m**3)
pl=hs/d; #power loss(watt/kg)
#Result
print "hysteresis loss per cycle is",h,"J/m**3"
print "hysteresis loss per second is",hs,"watt/m**3"
print "power loss is",round(pl,2),"watt/kg"
import math
from __future__ import division
#variable declaration
d=2.351 #bond lenght
N=6.02*10**26 #Avagadro number
n=8 #number of atoms in unit cell
A=28.09 #Atomin mass of silicon
m=6.02*10**26 #1mole
#Calculations
a=(4*d)/math.sqrt(3)
p=(n*A)/((a*10**-10)*m) #density
#Result
print "a=",round(a,2),"Angstorm"
print "density =",round(p*10**16,2),"kg/m**3"
print"#Answer given in the textbook is wrong"
import math
from __future__ import division
from sympy import Symbol
#Variable declaration
r=Symbol('r')
#Calculation
a1=4*r/math.sqrt(3);
R1=(a1/2)-r; #radius of largest sphere
a2=4*r/math.sqrt(2);
R2=(a2/2)-r; #maximum radius of sphere
#Result
print "radius of largest sphere is",R1
print "maximum radius of sphere is",R2
import math
from __future__ import division
#variable declaration
r1=1.258 #Atomic radius of BCC
r2=1.292 #Atomic radius of FCC
#calculations
a1=(4*r1)/math.sqrt(3) #in BCC
b1=((a1)**3)*10**-30 #Unit cell volume
v1=(b1)/2 #Volume occupied by one atom
a2=2*math.sqrt(2)*r2 #in FCC
b2=(a2)**3*10**-30 #Unit cell volume
v2=(b2)/4 #Volume occupied by one atom
v_c=((v1)-(v2))*100/(v1) #Volume Change in %
d_c=((v1)-(v2))*100/(v2) #Density Change in %
#Results
print "a1=",round(a1,3),"Angstrom"
print "Unit cell volume =a1**3 =",round((b1)/10**-30,3),"*10**-30 m**3"
print "Volume occupied by one atom =",round(v1/10**-30,2),"*10**-30 m**3"
print "a2=",round(a2,3),"Angstorm"
print "Unit cell volume =a2**3 =",round((b2)/10**-30,3),"*10**-30 m**3"
print "Volume occupied by one atom =",round(v2/10**-30,2),"*10**-30 m**3"
print "Volume Change in % =",round(v_c,3)
print "Density Change in % =",round(d_c,2)
print "Thus the increase of density or the decrease of volume is about 0.5%"
import math
from __future__ import division
#variable declaration
n=4
M=58.5 #Molecular wt. of NaCl
N=6.02*10**26 #Avagadro number
rho=2180 #density
#Calculations
a=((n*M)/(N*rho))**(1/3)
s=a/2
#Result
print "a=",round(a/10**-9,3),"*10**-9 metre"
print "spacing between the nearest neighbouring ions =",round(s/10**-9,4),"nm"
import math
from __future__ import division
#variable declaration
n=4
A=63.55 #Atomic wt. of NaCl
N=6.02*10**26 #Avagadro number
rho=8930 #density
#Calculations
a=((n*A)/(N*rho))**(1/3) #Lattice Constant
#Result
print "lattice constant, a=",round(a*10**9,2),"nm"
import math
#variable declaration
r=0.123 #Atomic radius
n=4
A=55.8 #Atomic wt
a=2*math.sqrt(2)
N=6.02*10**26 #Avagadro number
#Calculations
rho=(n*A)/((a*r*10**-9)**3*N)
#Result
print "Density of iron =",round(rho),"kg/m**-3"