import math
#Variable declaration
d = 0.5 #Diameter of the coil(m)
l = 0.6 #Axial length of the coil(m)
B = 0.4 #Flux density(T)
I = 25.0 #Current carried by the coil(A)
theta = 60.0 #Angle between the useful force & the interpolar reference axis(degree)
#Calculation
F = B*I*l #Force developed on each coil side(N)
f = F*math.sin(theta*math.pi/180) #Useful force at the instant the coil lies at an angle of 60° w.r.t the interpolar ref axis(N)
r = d/2 #Radius of the coil(m)
T_c = f*r #Torque developed(N-m)
T_c1 = T_c*0.2248*3.281 #Torque developed in lb-ft by first method
T_c2 = T_c*0.737562 #Torque developed in lb-ft by second method
#Result
print('Case(a): Force developed on each coil side , F = %.f N' %F)
print('Case(b): Useful force at the instant the coil lies at an angle of 60° w.r.t the interpolar ref axis , f = %.1f N' %f)
print('Case(c): Torque developed , T_c = %.1f N-m' %T_c)
print('Case(d): Torque developed by first method , 1.3 N.m * 0.2248 lb/N * 3.281 ft/m = %.2f lb-ft' %T_c1)
print(' Torque developed by second method , 1.3 N.m * 0.737562 lb.ft/N.m = %.2f lb-ft' %T_c2)
import math
#Variable declaration
d = 18.0 #Diameter of the coil(inches)
l = 24.0 #Axial length of the coil(inches)
B = 24000.0 #Flux density(lines/sq.inches)
I = 26.0 #Current carried by the coil(A)
theta = 60.0 #Angle between the useful force & the interpolar ref axis(degree)
#Calculation
F = (B*I*l*10**-7)/1.13 #Force developed on each conductor(lb)
f = F*math.sin(theta*math.pi/180) #Useful force at the instant the coil lies at an angle of 60° w.r.t the interpolar ref axis(lb)
r = d/2 #Radius of the coil(inches)
T_c = f*(r*1.0/12) #Torque developed(lb.ft/conductor)
#Result
print('Case(a): Force developed on each conductor , F = %.3f lb' %F)
print('Case(b): Useful force , f = %.2f lb' %f)
print('Case(c): Torque developed , T_c = %.3f lb-ft/conductor' %T_c)
#Variable declaration
Z = 700.0 #Number of conductors
d = 24.0 #Diameter of the armature of the dc motor(inches)
l = 34.0 #Axial length of the coil(inches)
B = 50000.0 #Flux density(lines/sq.inches)
I = 25.0 #Current carried by the coil(A)
per = 0.7 #Conductors lying directly under poles
#Calculation
F_av = (B*I*l*10**-7)/1.13*(Z*per) #Average total force tending to rotate the armature(lb)
r = d/2 #Radius of the coil(inches)
T_av = F_av*(r/12) #Armature torque(lb-ft)
#Result
print('Case(a): Average total force tending to rotate the armature , F_av = %.f lb' %F_av)
print('Case(b): Armature torque , T_av = %.f lb-ft' %T_av)
#Variable declaration
slots = 120.0 #Number of armature slots
conductors_per_slot = 6.0 #Number of conductors per slot
B = 60000.0 #Flux density(lines/sq.inches)
d = 28.0 #Diameter of the armature(inches)
l = 14.0 #Axial length of the coil(inches)
A = 4.0 #Number of parallel paths
span = 0.72 #Pole arcs span 72% of the armature surface
I = 133.5 #Armature current(A)
#Calculation
Z_Ta = slots*conductors_per_slot*span #Number of armature conductors
F_t = (B*I*l)/(1.13*10**7 *A)*Z_Ta #Force developed(lb)
r = (d/2)/12 #Radius of the armature(feet)
T = F_t*r #Total torque developed(lb-ft)
#Result
print('Total developed armature torque , T = %.f lb-ft' %T)
#Variable declaration
slots = 120.0 #Number of armature slots
conductors_per_slot = 6.0 #Number of conductors per slot
B = 60000.0 #Flux density(lines/sq.inches)
d = 28.0 #Diameter of the armature(inches)
l = 14.0 #Axial length of the coil(inches)
A = 4.0 #Number of parallel paths
span = 0.72 #Pole arcs span 72% of the armature surface
T_a = 1500.0 #Total armature torque(lb-ft)
#Calculation
Z = slots*conductors_per_slot #Number of armature conductors
r = (d/2)/12 #Radius of the armature(feet)
I_a = T_a*A*1.13*10**7/(B*l*Z*r*span) #Total external armature current(A)
#Result
print('Total external armature current , I_a = %.1f A' %I_a)
#Variable declaration
phi_orig = 1.0 #Original flux
Ia_orig = 1.0 #Original armature current
T_orig = 150.0 #Original torque(N-m)
phi_new = 0.9 #New flux
Ia_new = 1.5 #New armature current
#Calculation
T_new = T_orig*(phi_new/phi_orig)*(Ia_new/Ia_orig) #New torque produced(N-m)
#Result
print('New torque produced , T = %.1f N-m' %T_new)
#Variable declaration
R_a = 0.25 #Armature resistance(ohm)
BD = 3.0 #Brush contact drop(V)
V = 120.0 #Applied voltage(V)
E_ca = 110.0 #counter EMF at a given load(V)
E_cb = 105 #Counter EMF due to application of additional load(V)
#Calculation
I_a_a = (V-(E_ca+BD))/R_a #Armature current(A)
I_a_b = (V-(E_cb+BD))/R_a #Armature current(A)
del_Ec = ((E_ca-E_cb)/E_ca)*100 #Change in counter EMF(percent)
del_Ia = ((I_a_b-I_a_a)/I_a_a)*100 #Change in armature current(percent)
#Result
print('Case(a): Aramature current , I_a = %.f A' %I_a_a)
print('Case(b): Aramature current due to additional load , I_a = %.f A' %I_a_b)
print('Case(c): Change in counter EMF , δE_c = %.2f percent' %del_Ec)
print(' Change in armature current , δI_a = %.1f percent' %del_Ia)
#Variable declaration
V_a = 120.0 #Rated terminal voltage of the DC motor(V)
R_a = 0.2 #Armature circuit resistance(ohm)
R_sh = 60.0 #Shunt field resistance(ohm)
I_l = 40.0 #Line current at full-load(A)
BD = 3.0 #Brush voltage drop(V)
S_orig = 1800.0 #Rated full-load speed(rpm)
per = 125.0/100 #Overload speed
#Calculation
#Case(a)
I_f = V_a/R_sh #Field current(A)
I_a_fl = I_l-I_f #Armature current at full-load(A)
E_c_orig = V_a-(I_a_fl*R_a+BD) #Back EMF at full-load(V)
I_a_nl = I_a_fl/2 #Armature current at half-load(A)
E_c_final = V_a-(I_a_nl*R_a+BD) #Back EMF at half load(V)
S_a = S_orig*(E_c_final/E_c_orig) #Speed at full load(rpm)
#Case(b)
I_a_b = I_a_fl*per #Armature current at 125% overload(A)
E_c_b = V_a-(I_a_b*R_a+BD) #Back EMF at 125% overload(V)
S_b = S_orig*(E_c_b/E_c_orig) #Speed at 125% overload(rpm)
#Result
print('Case(a): Speed at half load , S = %.f rpm' %S_a)
print('Case(b): Speed at an overload of 125 perecent , S = %.f rpm' %S_b)
#Variable declaration
I_l_orig = 40.0 #Original line current(A)
I_l_final = 66.0 #Final line current(A)
phi_orig = 1.0 #Original flux
phi_final = 112.0/100 #Final flux
V_a = 120.0 #Rated terminal voltage of the DC motor(V)
R_sh_orig = 60.0 #Original Field circuit resistance(ohm)
R_sh_final = 50.0 #Decreased final field circuit resistance(ohm)
R_a = 0.2 #Armature circuit resistance(ohm)
BD = 3.0 #Brush voltage drop(V)
S_orig = 1800.0 #Rated full-load speed(rpm)
#Calculation
I_f_orig = V_a/R_sh_orig #Original Field current(A)
I_a_orig = I_l_orig-I_f_orig #Original Armature current at full-load(A)
E_c_orig = V_a-(I_a_orig*R_a+BD) #Back EMF at full load(V)
I_f_final = V_a/R_sh_final #Final field current(A)
I_a_final = I_l_final-I_f_final #Final Armature current(A)
E_c_final = V_a-(I_a_final*R_a+BD) #Final EMF induced(V)
S = S_orig*(E_c_final/E_c_orig)*(phi_orig/phi_final) #Final speed of the motor(rpm)
#Result
print('Speed of the motor , S = %.f rpm' %S)
#Variable declaration
I_a_1 = 38.0 #Armature current at full-load(A) from example 4-8a
E_c_1 = 109.4 #Back EMF at full-load(V)
S_1 = 1800.0 #Speed at full-load(rpm)
I_a_2 = 19.0 #Armature current at half-load(A) from example 4-8a
E_c_2 = 113.2 #Back EMF at half-load(V)
S_2 = 1863.0 #Speed at half-load(rpm)
I_a_3 = 47.5 #Armature current at 125% overload(A) from example 4-8b
E_c_3 = 107.5 #Back EMF at 125% overload(V)
S_3 = 1769.0 #Speed at 125% overload(rpm)
I_a_4 = 63.6 #Armature current at overload(A) from example 4-9
E_c_4 = 104.3 #Back EMF at overload(V)
S_4 = 1532.0 #Speed at overload(rpm)
#Calculation
P_d_1 = E_c_1*I_a_1 #Armature power developed at full-load(W)
P_d_2 = E_c_2*I_a_2 #Armature power developed at half-load(W)
P_d_3 = E_c_3*I_a_3 #Armature power developed at 125% overload(W)
P_d_4 = E_c_4*I_a_4 #Armature power developed at overload(W)
#Result
print(' Example \t I_a \t E_c \t Speed \t P_d or (E_c*I_a)')
print(' _______________________________________________________________________')
print(' 4-8a \t\t %d \t %.1f \t %d \t %d W at full-load' %(I_a_1,E_c_1,S_1,P_d_1))
print(' \t\t %d \t %.1f \t %d \t %.f W at half-load' %(I_a_2,E_c_2,S_2,P_d_2))
print(' 4-8b \t\t %.1f \t %.1f \t %d \t %d W at 125 percent overload' %(I_a_3,E_c_3,S_3,P_d_3))
print(' 4-9 \t\t %.1f \t %.1f \t %d \t %d W at overload' %(I_a_4,E_c_4,S_4,P_d_4))
print(' _______________________________________________________________________')
#Variable declaration
T_a = 6.5 #Torque(dyne-centimeters)
T_b = 10.6 #Torque in (gram-centimeters)
T_c = 12.2 #Torque in (ounce-inches)
#Calculation
T_a_Nm = T_a*1.416*10**-5*7.0612*10**-3 #Torque(N-m)
T_a_lbft = T_a*1.416*10**-5*5.208*10**-3 #Torque(lb-ft)
T_b_Nm = T_b*(1/72.01)*7.0612*10**-3 #Torque(N-m)
T_b_lbft = T_b*(1/72.01)*5.208*10**-3 #Torque(lb-ft)
T_c_Nm = T_c*7.0612*10**-3 #Torque(N-m)
T_c_lbft = T_c*5.208*10**-3 #Torque(lb-ft)
#Result
print('Case(a): Torque , T = %.1e N-m' %T_a_Nm)
print(' Torque , T = %.1e lb-ft' %T_a_lbft)
print('Case(b): Torque , T = %.2e N-m' %T_b_Nm)
print(' Torque , T = %.2e lb-ft' %T_b_lbft)
print('Case(c): Torque , T = %.3e N-m' %T_c_Nm)
print(' Torque , T = %.2e lb-ft' %T_c_lbft)
#Variable declaration
V_a = 120.0 #Rated terminal voltage of dc shunt motor(V)
R_a = 0.2 #Armature resistance(ohm)
BD = 2.0 #Brush drop(V)
I_a = 75.0 #Full-load armature current(A)
#Calculation
I_st = (V_a-BD)/R_a #Current at the instant of starting(A)
percentage = I_st/I_a*100 #Percentage at full load
#Result
print('Current at the instant of starting , I_st = %.f A (Counter EMF is zero)' %I_st)
print('Percentage at full load = %d percent' %percentage)
#Variable declaration
V_a = 120.0 #Rated terminal voltage of dc shunt motor(V)
R_a = 0.2 #Armature resistance(ohm)
BD = 2.0 #Brush drop(V)
I_a = 75.0 #Full-load armature current(A)
I_a_new = 1.5*I_a #Armature current at 150% rated load(A)
E_c_a = 0 #Back EMF at starting(V)
E_c_b = 0.25* V_a #Back EMF is 25% of Va at 150% rated load(V)
E_c_c = 0.5*V_a #Back EMF is 50% of Va at 150% rated load(V)
#Calculation
R_s_a = (V_a-E_c_a-BD)/I_a_new-R_a #Starting resistance at starting(ohm)
R_s_b = (V_a-E_c_b-BD)/I_a_new-R_a #Starting resistance 25% of Va(ohm)
R_s_c = (V_a-E_c_c-BD)/I_a_new-R_a #Starting resistance 50% of Va(ohm)
E_c_d = V_a-(I_a*R_a+BD) #Counter EMF at full-load without starting resistance(V)
#Result
print('Case(a): Starting resistance at the instant of starting , R_s = %.2f Ω' %R_s_a)
print('Case(b): Starting resistance at 25 percent of armature voltage , R_s = %.3f Ω' %R_s_b)
print('Case(c): Starting resistance at 50 percent of armature voltage , R_s = %.3f Ω' %R_s_c)
print('Case(d): Counter EMF at full-load without starting resistance , E_c = %.f V' %E_c_d)
#Variable declaration
T_orig = 160.0 #Original torque developed(lb-ft)
I_a_orig = 140.0 #Original armature current(A)
phi_f_orig = 1.6*10**6 #Original field flux(lines)
T_final_a = 190.0 #Final torque developed when reconnected as a cumulative compound motor(lb-ft)
I_a_b = 154.0 #Final armature current(A)
#Calculation
phi_f = phi_f_orig*(T_final_a/T_orig) #Field flux(lines)
percentage = (phi_f/phi_f_orig)*100-100 #Percentage increase in flux
phi_f_final = 1.1*phi_f #Final field flux(lines)
T_f = T_final_a*(I_a_b/I_a_orig)*(phi_f_final/phi_f) #Final torque developed(lb-ft)
#Result
print('Case(a): Flux increase due to series field , Φ_f = %.1f percent' %percentage)
print('Case(b): Final torque , T_f = %.f lb-ft' %T_f)
#Variable declaration
I_a_orig = 25.0 #Original armature current(A)
I_a_final = 30.0 #Final armature current(A)
T_orig = 90.0 #Original torque developed(lb-ft)
phi_orig = 1.0 #Original flux
phi_final = 1.1 #Final flux
#Calculation
T_a = T_orig*(I_a_final/I_a_orig)**2 #Final torque developed if field is unsaturated(lb-ft)
T_b = T_orig*(I_a_final/I_a_orig)*(phi_final/phi_orig) #Final torque developed when current rises to 30A and flux increases by 10%
#Result
print('Case(a): Torque when field is unsaturated , T = %.1f lb-ft' %T_a)
print('Case(b): Torque when current rises to 30 A and flux increases by 10 percent , T = %.1f lb-ft' %T_b)
#Variable declaration
V_a = 230.0 #Rated armature voltage(V)
P = 10.0 #Rated power(hp)
S = 1250.0 #Rated speed(rpm)
R_A = 0.25 #Armature resistance(ohm)
R_p = 0.25 #Interpole resistance(ohm)
BD = 5.0 #Brush voltage drop(V)
R_s = 0.15 #Series field resistance(ohm)
R_sh = 230.0 #Shunt field resistance(ohm)
I_fl = 55.0 #Line current at rated load(A)
I_ol = 4.0 #No-load line current(A)
S_o = 1810.0 #No-load speed(rpm)
#Calculation
#Case(a)
R_a = R_A+R_p #Effective armature resistance(ohm)
I_f = V_a/R_sh #Field current(A)
I_a = I_ol-I_f #Armature current at no-load(A)
E_c_o = V_a-(I_a*R_a+BD) #No-load back EMF(V)
I_a_fl = I_fl-I_f #Armature current at full-load(A)
E_c_full_load = V_a-(I_a_fl*R_a+BD) #Back EMF at full-load(V)
S_r = S_o*(E_c_full_load/E_c_o) #Speed at rated load(rpm)
#Case(b)
P_d = E_c_full_load*I_a_fl #Internal power(W)
hp = P_d/746.0 #Internal horse power(hp)
#Result
print('Case(a): Speed at rated load , S_r = %.f rpm' %S_r)
print('Case(b): Internal power in watts , P_d = %.f W' %P_d)
print(' Internal horse-power developed , P_d = %.1f hp' %hp)
#Variable declaration
V_a = 230.0 #Rated armature voltage(V)
P = 10.0 #Rated power(hp)
S = 1250.0 #Rated speed(rpm)
R_A = 0.25 #Armature resistance(ohm)
R_p = 0.25 #Interpole resistance(ohm)
BD = 5.0 #Brush voltage drop in volt
R_s = 0.15 #Series field resistance in ohm
R_sh = 230.0 #Shunt field resistance in ohm
phi_1 = 1.0 #Original flux per pole
I_fl = 55.0 #Line current at rated load(A)
phi_2 = 1.25 #Flux increased by 25% due to long-shunt cumulative connection
I_ol = 4.0 #No-load line current(A)
S_o = 1810.0 #No-load speed(rpm)
#Calculation
R_a = R_A+R_p #Effective armature resistance(ohm)
I_f = V_a/R_sh #Field current(A)
I_a = I_ol-I_f #Armature current at no-load(A)
E_c_o = V_a-(I_a*R_a+BD) #No-load back EMF(V)
I_a_fl = I_fl-I_f #Armature current at full-load(A)
#Case(a)
E_c_o1 = V_a-(I_a*R_a+I_a*R_s+BD) #No-load back EMF for long shunt cumulative connection(V)
S_n1 = S_o*(E_c_o1/E_c_o) #Speed at no-load(rpm)
#Case(b)
E_c_full_load_lsh = V_a-(I_a_fl*R_a+I_a_fl*R_s+BD ) #Back EMF at full-load for long-shunt cumulative motor(V)
S_r_lsh = S_n1*(E_c_full_load_lsh/E_c_o1)*(phi_1/phi_2) #Speed at rated load for long shunt connection(rpm)
#Case(c)
E_c_full_load = V_a-(I_a_fl*R_a+BD) #Back EMF at full-load(V)
S_r = S_o*(E_c_full_load/E_c_o) #Speed at rated load for shunt connection(rpm)
P_d = E_c_full_load*I_a_fl #Internal power(W)
hp = P_d/746.0 #Internal horse power(hp)
T_shunt = hp*5252/S_r #Internal torque at full-load for shunt motor(lb-ft)
I_a1 = I_a_fl #Armature current for shunt motor(A)
I_a2 = I_a_fl #Armature current for long-shunt cumulative motor(A)
T_comp = T_shunt*(phi_2/phi_1)*(I_a2/I_a1) #Internal torque at full load for long-shunt cumulative motor(lb-ft)
#Case(d)
Horsepower = (E_c_full_load_lsh*I_a_fl)/746 #Internal horsepower of compound motor based on flux increase(hp)
#Result
print('Case(a): Speed at no-load , S_n1 = %d rpm' %S_n1)
print('Case(b): Speed at rated-load , S_r = %d rpm' %S_r_lsh)
print('Case(c): Internal torque at full-load with series field , T_comp = %.2f lb-ft' %T_comp)
print(' Internal torque at full-load without series field , T_shunt = %.2f lb-ft' %T_shunt)
print('Case(d): Internal horsepower of the compound motor , Horsepower = %.1f hp' %Horsepower)
print('Case(e): The internal hp exceeds the rated hp because the power developed in the motor must also overcome the internal mechanical rotational losses')
print('\nNOTE: The change in obtained answer from that of textbook is due to more precision i.e more number of decimal places in this case')
#Variable declaration
P = 25.0 #Power rating of a series motor(hp)
V_a = 250.0 #Rated voltage(V)
R_a = 0.1 #Armature circuit resistance(ohm)
BD = 3.0 #Brush voltage drop(V)
R_s = 0.05 #Series field resistance(ohm)
I_a = 85.0 #Armature current(A)
I_a1 = 100.0 #Armature current(A)(case a)
I_a2 = 40.0 #Armature current(A)(case b)
S_1 = 600.0 #Speed(rpm)
R_d = 0.05 #Diverter resistance(ohm)
#Calculation
#Case(a)
E_c2 = V_a-I_a1*(R_a+R_s)-BD #Back EMF when Ia = 100 A(V)
E_c1 = V_a-I_a*(R_a+R_s)-BD #Back EMF when Ia = 85 A(V)
S_2 = S_1*(E_c2/E_c1)*(I_a/I_a1) #Speed(rpm)
#Case(b)
E_c3 = V_a-I_a2*(R_a+R_s)-BD #Back EMF when Ia = 40 A(V)
S_3 = S_1*(E_c3/E_c1)*(I_a/I_a2) #Speed(rpm)
#Case(c)
R_sd = (R_s*R_d)/(R_s+R_d ) #Effective series field resistance(ohm)
E_c2_new = V_a-I_a1*(R_a+R_sd)-BD #Back EMF when Ia = 100 A(V)
S_2_new = S_1*(E_c2_new/E_c1)*(I_a/(I_a1/2)) #Speed(rpm)
E_c3_new = V_a-I_a2*(R_a+R_sd)-BD #Back EMF when Ia = 40 A(V)
S_3_new = S_1*(E_c3_new/E_c1)*(I_a/(I_a2/2)) #Speed(rpm)
#Result
print('Case(a): Speed when current is 100 A , S_2 = %.f rpm' %S_2)
print('Case(b): Speed when current is 40 A , S_3 = %d rpm' %S_3)
print('Case(c): Speed when current is 100 A and using a diverter , S_2 = %.f rpm' %S_2_new)
print(' Speed when current is 40 A and using a diverter , S_3 = %.f rpm' %S_3_new)
#Variable declaration
S_n1 = 1810.0 #No-load speed(rpm) From Ex. 4-16
S_f1 = 1603.0 #Full-load speed(rpm)
S_n2 = 1806.0 #No-load speed(rpm) From Ex. 4-17
S_f2 = 1231.0 #Full-load speed(rpm)
S_n3 = 1311.0 #No-load speed(rpm) From Ex. 4-18
S_f3 = 505.0 #Full-load speed(rpm)
#Calculation
SR_1 = (S_n1-S_f1)/S_f1*100 #Speed regulation for shunt motor(%)
SR_2 = (S_n2-S_f2)/S_f2*100 #Speed regulation for compound motor(%)
SR_3 = (S_n3-S_f3)/S_f3*100 #Speed regulation for series motor(%)
#Result
print('Case(a): Speed regulation , SR(shunt) = %.1f percent' %SR_1)
print('Case(b): Speed regulation , SR(compound) = %.1f percent' %SR_2)
print('Case(c): Speed regulation , SR(series) = %.1f percent' %SR_3)
import math
#Variable declaration
SR = 0.1 #Speed regulation of a shunt motor
omega_f1 = 60.0*math.pi #Full-load speed(rad/s)
#Calculation
omega_n1 = omega_f1*(1+SR) #No-load speed(rad/s)
S = omega_n1*(1/(2*math.pi))*(60.0/1) #No-load speed(rpm)
#Result
print('Case(a): No-load speed , ω_n1 = %.fπ rad/s' %(omega_n1/math.pi))
print('Case(b): No-load speed , S = %.f rpm' %S)
#Variable declaration
S_int = 1603.0 #Internal rated speed(rpm)
S_ext = 1250.0 #External rated speed(rpm)
hp_int = 14.3 #Internal horsepower
hp_ext = 10.0 #External horsepower
#Calculation
T_int = hp_int*5252/S_int #Internal torque(lb-ft)
T_ext = hp_ext*5252/S_ext #External torque(lb-ft)
#Result
print('Case(a): Internal torque , T_int = %.2f lb-ft' %T_int)
print('Case(b): External torque , T_ext = %.1f lb-ft' %T_ext)
print('Case(c): Internal hp developed due electromagnetic torque is used internally to overcome mechanical losses of the motor reducing the torque available at its shaft to perform work')
#Variable declaration
P = 50.0 #Power rating of the servo motor(W)
S = 3000.0 #Full-load speed of the servo motor(rpm)
#Calculation
T_lbft = (7.04*P)/S #Output torque(lb-ft)
T_ounceinch = T_lbft*192 #Output torque(ounce-inches)
#Result
print('Output torque available at the motor pulley , T = %.1f oz-in' %T_ounceinch)
import math
#Variable declaration
P = 50.0 #Power rating of the servo motor(W)
S = 3000.0 #Full-load speed of the servo motor(rpm)
#Calculation
S_rad_per_sec = S*2*math.pi/60 #Full-load speed of the servo motor(rad/s)
omega = 314.2 #Angular frequency(rad/s)
T_Nm = P/omega #Output torque(N-m)
T_ounceinch = T_Nm*1/(7.0612*10**-3) #Output torque(oz-in)
#Result
print('Case(a): Motor speed in radians per second = %.1f rad/s' %S_rad_per_sec)
print('Case(b): Output torque in newton-meters , T = %.4f N-m' %T_Nm)
print('Case(c): Output torque in ounce-inches , T = %.1f oz-in' %T_ounceinch)
print('Case(d): Both answers are the same')