#Variable declaration
kVA = 1000.0 #Rating of the 3-phase alternator(kVA)
V_L = 4600.0 #Rated line voltage(V)
R_a = 2.0 #Armature resistance per phase(ohm)
X_s = 20.0 #Synchronous armature reactance per phase(ohm)
pf_a = 1.0 #Unity power factor
pf_b = 0.75 #Lagging power factor
#Calculation
V_P = V_L/3**0.5 #Phase voltage(V)
I_P = kVA*1000/(3*V_P) #Phase current(A)
I_a = I_P #Armature current(A)
#Case(a)
E_g_a = complex((V_P+I_a*R_a),(I_a*X_s)) #Full-load generated voltage per phase(V/phase)
#Case(b)
sin_theta_b = (1-pf_b**2)**0.5 #Sin of angle of theta_b
E_g_b = complex((V_P*pf_b+ I_a*R_a),(V_P*sin_theta_b+I_a*X_s)) #Full-load generated voltage per phase(V/phase)
#Result
print('Case(a): Full-load generated voltage per phase at unity PF , E_g = %d V/phase' %(abs(E_g_a)))
print('Case(b): Full-load generated voltage per phase at 0.75 PF lagging , E_g = %d V/phase' %(abs(E_g_b)))
print('\nNOTE: √3 value is taken as %f instead of 1.73 as in textbook so slight variations in the obtained answer' %(3**0.5))
#Variable declaration
kVA = 1000.0 #Rating of the 3-phase alternator(kVA)
V_L = 4600.0 #Rated line voltage(V)
R_a = 2.0 #Armature resistance per phase(ohm)
X_s = 20.0 #Synchronous armature reactance per phase(ohm)
pf_a = 0.75 #Leading power factor
pf_b = 0.40 #Leading power factor
#Calculation
V_P = V_L/3**0.5 #Phase voltage(V)
I_P = kVA*1000/(3*V_P) #Phase current(A)
I_a = I_P #Armature current(A)
#Case(a)
sin_theta_a = (1-pf_a**2)**0.5 #Sin of angle of theta_a
E_g_a = complex((V_P*pf_a+I_a*R_a),(V_P*sin_theta_a-I_a*X_s)) #Full-load generated voltage per phase(V/phase)
#Case(b)
sin_theta_b = (1-pf_b**2)**0.5 #Sin of angle of theta_b
E_g_b = complex((V_P*pf_b+ I_a*R_a),(V_P*sin_theta_b+-I_a*X_s)) #Full-load generated voltage per phase(V/phase)
#Result
print('Case(a): Full-load generated voltage per phase at 0.75 PF leading , E_g = %d V/phase' %(abs(E_g_a)))
print('Case(b): Full-load generated voltage per phase at 0.40 PF leading , E_g = %d V/phase' %(abs(E_g_b)))
print('\nNOTE: √3 value is taken as %f instead of 1.73 as in textbook so slight variations in the obtained answer' %(3**0.5))
V_P = 2655.0 #Phase voltage(V)
E_g_a1 = 4820.0 #Full-load generated voltage per phase at 0.75 PF lagging(V/phase)
E_g_b1 = 3840.0 #Full-load generated voltage per phase at unity PF(V/phase)
E_g_a2 = 2366.0 #Full-load generated voltage per phase at 0.75 PF leading(V/phase)
E_g_b2 = 1315.0 #Full-load generated voltage per phase at 0.40 PF leading(V/phase)
#Calculation
VR_a = (E_g_a1-V_P)/V_P*100 #Voltage regulation at 0.75 PF lagging(percent)
VR_b = (E_g_b1-V_P)/V_P*100 #Voltage regulation at unity PF(percent)
VR_c = (E_g_a2-V_P)/V_P*100 #Voltage regulation at 0.75 PF leading(percent)
VR_d = (E_g_b2-V_P)/V_P*100 #Voltage regulation at 0.75 PF leading(percent)
#Result
print('Case(a): Voltage regulation at 0.75 PF lagging , VR = %.1f percent' %VR_a)
print('Case(b): Voltage regulation at unity PF , VR = %.1f percent' %VR_b)
print('Case(c): Voltage regulation at 0.75 PF leading , VR = %.2f percent' %VR_c)
print('Case(d): Voltage regulation at 0.40 PF leading , VR = %.1f percent' %VR_d)
print('\nNOTE: √3 value is taken as %f instead of 1.73 as in textbook so slight variations in the obtained answer' %(3**0.5))
#Variable declaration
kVA = 100.0 #Rating of the 3-phase alternator(kVA)
V_L = 1100.0 #Line voltage of the 3-phase alternator(V)
E_gp1 = 6.0 #DC voltage between lines in dc resistance test(V)
I_a1 = 10.0 #DC current in lines dc resistance test(A)
pf_1 = 0.8 #Lagging power factor
pf_2 = 0.8 #Leading power factor
E_gp2 = 420.0 #Voltage between lines in open-circuit test(V)
I_f2 = 12.5 #DC Field current in open-circuit test(A)
I_f3 = 12.5 #DC Field current in short-circuit test(A)
#Calculation
#Case(a)
I_a_rated = kVA*1000/(V_L*3**0.5) #Rated current per phase(A)
I_a = 3**0.5*I_a_rated #Rated Line current(A)
V_l = E_gp1
R_dc = V_l/(2*I_a1) #Effective dc armature resistance(ohm/winding)
R_ac = R_dc*1.5 #Effective ac armature resistance(ohm/phase)
R_a = R_ac #Effective ac armature resistance from dc resistance test(ohm/phase)
Z_p = E_gp2/I_a #Synchronous impedance per phase(ohm/phase)
X_s = (Z_p**2-R_a**2)**0.5 #Synchronous reactance per phase(ohm/phase)
#Case(b)
V_p = V_L/3**0.5 #Phase voltage(V/phase)
V_fl = V_p #Full-load voltage(V/phase)
sin_theta_1 = (1-pf_1**2)**0.5 #Sin value of theta 1
E_gp_lag = complex((V_p*pf_1+I_a_rated*R_a),(V_p*sin_theta_1+I_a_rated*X_s)) #Generated voltage per phase at 0.8 PF lagging(V/phase)
V_nl_lag = abs(E_gp_lag) #No-load voltage(V/phase)
VR1 = (V_nl_lag-V_fl)/V_fl*100 #Voltage regulation at 0.8 PF lagging(%)
sin_theta_2 = (1-pf_2**2)**0.5 #Sin value of theta 2
E_gp_lead = complex((V_p*pf_2+I_a_rated*R_a),(V_p*sin_theta_2-I_a_rated*X_s)) #Generated voltage per phase at 0.8 PF leading(V/phase)
V_nl_lead = abs(E_gp_lead) #No-load voltage(V/phase)
VR2 = (V_nl_lead-V_fl)/V_fl*100 #Voltage regulation at 0.8 PF leading(%)
#Result
print('Case(a): Effective resistance per phase , R_ac = %.2f Ω/phase' %R_ac)
print(' Synchronous impedance per phase , Z_p = %.2f Ω/phase' %Z_p)
print(' Synchronous reactance per phase , X_s = %.1f Ω/phase' %X_s)
print('Case(b): Voltage regulation at 0.8 PF lagging = %.f percent' %VR1)
print(' Voltage regulation at 0.8 PF leading = %.1f percent' %VR2)
#Variable declaration
kVA = 100.0 #Rating of the 3-phase alternator(kVA)
V_L = 1100.0 #Line voltage of the 3-phase alternator(V)
E_gp1 = 6.0 #DC voltage between lines in dc resistance test(V)
I_a1 = 10.0 #DC current in lines dc resistance test(A)
pf_1 = 0.8 #Lagging power factor
pf_2 = 0.8 #Leading power factor
E_gp2 = 420.0 #Voltage between lines in open-circuit test(V)
I_f2 = 12.5 #DC Field current in open-circuit test(A)
I_f3 = 12.5 #DC Field current in short-circuit test(A)
#Calculation
#Case(a)
I_a_rated = kVA*1000/(V_L*3**0.5) #Rated current per phase(A)
I_L = I_a_rated #Rated Line current(A)
I_p = I_L/3**0.5 #Phase current(A)
I_a = I_p #Rated Line current(A)
Z_s = E_gp2/I_p #Synchronous impedance per phase(ohm/phase)
V_l = E_gp1
R_dc = V_l/(2*I_a1) #Effective dc armature resistance(ohm/winding)
R_ac = R_dc*1.5 #Effective ac armature resistance(ohm/phase)
R_eff = 3*R_ac #Effective resistance(ohm/phase)
R_a = R_eff
X_s = (Z_s**2-R_eff**2)**0.5 #Synchronous reactance per phase(ohm/phase)
#Case(b)
V_p = V_L #Phase voltage(V/phase)
V_fl = V_p #Full-load voltage(V/phase)
sin_theta_1 = (1-pf_1**2)**0.5 #Sin value of theta 1
E_gp_lag = complex((V_p*pf_1+I_a*R_a),(V_p*sin_theta_1+I_a*X_s)) #Generated voltage per phase at 0.8 PF lagging(V/phase)
V_nl_lag = abs(E_gp_lag) #No-load voltage(V/phase)
VR1 = (V_nl_lag-V_fl)/V_fl*100 #Voltage regulation at 0.8 PF lagging(%)
sin_theta_2 = (1-pf_2**2)**0.5 #Sin value of theta 2
E_gp_lead = complex((V_p*pf_2+I_a*R_a),(V_p*sin_theta_2-I_a*X_s)) #Generated voltage per phase at 0.8 PF leading(V/phase)
V_nl_lead = abs(E_gp_lead) #No-load voltage(V/phase)
VR2 = (V_nl_lead-V_fl)/V_fl*100 #Voltage regulation at 0.8 PF leading(%)
print('Case(a): Effective resistance per phase , R_eff = %.2f Ω/phase' %R_eff)
print(' Synchronous impedance per phase , Z_s = %.2f Ω/phase' %Z_s)
print(' Synchronous reactance per phase , X_s = %.1f Ω/phase' %X_s)
print('Case(b): Voltage regulation at 0.8 PF lagging = %.f percent' %VR1)
print(' Voltage regulation at 0.8 PF leading = %.1f percent' %VR2)
#Variable declaration
E_L = 11000.0 #Line voltage generated(V)
kVA = 165000.0 #Rating of the alternator(kVA)
Z_p = 1.0 #Synchronous reactance(ohm)
R_p = 0.1 #Armature resistance(ohm/phase)
Z_r = 0.8 #Reactor reactance(ohm/phase)
#Calculation
E_p = E_L/3**0.5 #Rated phase voltage(V)
I_p = kVA*1000/(3*E_p) #Rated current per phase(A)
#Case(a)
I_max_a = E_p/R_p #Maximum short-circuit current(A)
overload_a = I_max_a/I_p #Overload
#Case(b)
I_steady = E_p/Z_p #Sustained short-circuit current(A)
overload_b = I_steady/I_p #Overload
#Case(c)
Z_t = complex(R_p,Z_r) #Total reactance per phase(ohm)
I_max_c = E_p/abs(Z_t) #Maximum short-circuit current(A)
overload_c = abs(I_max_c)/I_p #Overload
#Result
print('Case(a): Maximum short-circuit current at instant of short-circuit , I_max = %.f A' %I_max_a)
print(' Overload = %.1f * rated current' %overload_a)
print('Case(b): Sustained short-circuit current , I_steady = %.f A' %I_steady)
print(' Overload = %.2f * rated current' %overload_b)
print('Case(c): Maximum short-circuit current with reactors , I_max = %.f A' %I_max_c)
print(' Overload = %.3f * rated current' %overload_c)
print('\nNOTE: √3 value is taken as %f instead of 1.73 as in textbook so slight variations in the obtained answer' %(3**0.5))
import math
import cmath
#Variable declaration
kVA = 100.0 #Rating of the 3-phase alternator(kVA)
V_L = 1100.0 #Line voltage of the 3-phase alternator(V)
E_gp1 = 6.0 #DC voltage between lines in dc resistance test(V)
I_a1 = 10.0 #DC current in lines dc resistance test(A)
pf = 0.8 #Lagging power factor
E_gp2 = 420.0 #Voltage between lines in open-circuit test(V)
I_f2 = 12.5 #DC Field current in open-circuit test(A)
I_f3 = 12.5 #DC Field current in short-circuit test(A)
I_L = 52.5 #Rated line current(A)
I_a = I_L #Rated current per phase(A)
E_gp = complex(532,623) #Generated voltage at 0.8 PF lagging(V/phase)
X_s = 4.6 #Synchronous reactance per phase(ohm/phase)
V_p = 635.0 #Phase voltage(V)
#Calculation
#Case(a)
P_T = 3**0.5*V_L*I_L*pf #Total output 3-phase power(W)
#Case(b)
P_p_b = P_T*10**-3/3.0 #Total output 3-phase power per phase(W)
#Case(d)
theta = math.acos(0.8)*180/math.pi #Phase angle of PF(degree)
theta_plus_deba = cmath.phase(E_gp)*180/math.pi #Phase angle of E_gp(degrees)
deba = theta_plus_deba-theta #Torque angle(degrees)
#Case(e)
P_p_e = abs(E_gp)*10**-3/X_s*V_p*math.sin(deba*math.pi/180) #Approximate output power per phase(W)
#Case(f)
P_p_f = abs(E_gp)*10**-3*I_a*math.cos(theta_plus_deba*math.pi/180) #Approximate output power per phase(W)
#Result
print('Case(a): Total output 3-phase power , P_T = %.f W' %P_T)
print('Case(b): Output power per phase , P_p = %.2f kW' %P_p_b)
print('Case(c): Generated voltage , E_gp = %.1f∠%.1f° V' %(abs(E_gp),cmath.phase(E_gp)*180/math.pi))
print('Case(d): Torque angle , δ = %.2f° ' %deba)
print('Case(e): Approximate output power per phase , P_p = %.f W' %P_p_e)
print('Case(f): Approximate output power per phase , P_p = %.f W' %P_p_f)
import math
#Variable declaration
E_g = 819.0 #Magnitude of generated voltage(V)
V_p = 635.0 #Phase voltage(V)
X_s = 4.6 #Synchronous reactance per phase(ohm/phase)
S = 1200.0 #Synchronous speed(rpm)
delta = 12.64 #Angle(degree)
#Calculation
#Case(a)
T_p_a = 7.04*E_g*V_p*math.sin(delta*math.pi/180)/(S*X_s) #Output torque per phase(lb-ft)
T_3ph_a = 3*T_p_a #Total output torque(lb-ft)
#Case(b)
omega = S*2*math.pi/60 #Speed(rad/s)
T_p_b = E_g*V_p*math.sin(delta*math.pi/180)/(omega*X_s) #Output torque per phase(N-m)
T_3ph_b = 3*T_p_b #Total output torque(N-m)
#Case(c)
T_p_c = T_p_a*1.356 #Output torque per phase(N-m)
T_3ph_c = 3.0*T_p_c #Total output torque(N-m)
#Result
print('Case(a): Output torque per phase , T_p = %.f lb-ft' %T_p_a)
print(' Total output torque , T_3φ = %.f lb-ft' %T_3ph_a)
print('Case(b): Output torque per phase , T_p = %.f N-m' %T_p_b)
print(' Total output torque , T_3φ = %.f N-m' %T_3ph_b)
print('Case(c): Output torque per phase , T_p = %.f N-m' %T_p_c)
print(' Total output torque , T_3φ = %.f N-m' %T_3ph_c)