from __future__ import division
import math
import cmath
#initializing the variables:
Z1 = 5 - 3j;
Z2 = 4 + 7j;
Z3 = 3.9 - 6.7j;
#calculation:
ZT = (Z1*Z2/(Z1 + Z2))+ Z3
y = ZT.imag
x = ZT.real
#Results
print "\n\n Result \n\n"
print "\n ZT is ",round(x,2)," + (",round(y,2),")i"
from __future__ import division
import math
import cmath
#initializing the variables:
Z1 = 3 + 4j;
Z2 = 2 - 5j;
#calculation:
za = 1/Z1
zb = 1/Z2
zc = za + zb
zd = 1/zc
zax = za.real
zay = za.imag
zbx = zb.real
zby = zb.imag
zcx = zc.real
zcy = zc.imag
zdx = zd.real
zdy = zd.imag
#Results
print "\n\n Result \n\n"
print "\n (a)1/Z1 is ",round( zax,2)," + (",round(zay,2),")i"
print "\n (b)1/Z2 is ",round( zbx,2)," + (",round(zby,2),")i"
print "\n (c)1/Z1 + 1/Z2 is ",round( zcx,2)," + (",round(zcy,2),")i"
print "\n (d)1/(1/Z1 + 1/Z2) is ",round( zdx,2)," + (",round(zdy,2),")i"
from __future__ import division
import math
import cmath
#initializing the variables:
Z1 = 9 - 2j;
Z2 = 2 + 1j;
Z3 = -2 + 1j;
Z4 = 5 + 2j;
#calculation:
za = Z1/3
zb = Z2*Z3
zca = (2*Z4.real + Z4.imag)/-1
zcb = Z4.real - zca
zaa = za.real
zab = za.imag
zbx = zb.real
zby = zb.imag
#Results
print "\n\n Result \n\n"
print "\n (a)a and b are ", zaa," and ",round(zab,2)," resp."
print "\n (b)x and y are ", zbx," and ",zby," resp."
print "\n (c)a and b are ", zca," and ",zcb," resp."
from __future__ import division
import math
import cmath
#initializing the variables:
r = 5;# magnitude
theta = -132;# in degree
#calculation:
x = r*math.sin(theta*math.pi/180)
y = r*math.cos(theta*math.pi/180)
z = x + y*1j
#Results
print "\n\n Result \n\n"
print "\n Z is ",round(x,2)," + (",round(y,2),")i"
from __future__ import division
import math
import cmath
#initializing the variables:
r1 = 4.76;# magnitude
theta1 = 35;# in degree
r2 = 7.36;# magnitude
theta2 = -48;# in degree
#calculation:
x1 = r1*cmath.cos(theta1*math.pi/180)
y1 = r1*cmath.sin(theta1*math.pi/180)
z1 = x1 + y1*1j
x2 = r2*cmath.cos(theta2*math.pi/180)
y2 = r2*cmath.sin(theta2*math.pi/180)
z2 = x2 + y2*1j
z3 = z1*z2/(z1 + z2)
x3 = z3.real
y3 = z3.imag
r3 = (x3**2 + y3**2)**0.5
theta3 = cmath.phase(complex(x3,y3))*180/math.pi
#Results
print "\n\n Result \n\n"
print "\n ZT is (",round( r3,2),",round(/_",round(theta3,2),"deg)"
from __future__ import division
import math
import cmath
#initializing the variables:
z = -2 + 3j;
#calculation:
zc = z**5
x = zc.real
y = zc.imag
r = (x**2 + y**2)**0.5
theta = cmath.phase(complex(x,y))*180/math.pi
#Results
print "\n\n Result \n\n"
print "\n Z is ",round( x,2)," + (",round(y,2),")i"
print "\n ZT is (",round( r,2),"round/_",round(theta,2),"deg)"
from __future__ import division
import math
import cmath
#initializing the variables:
z = 12 + 5j;
#calculation:
x = z.real
y = z.imag
r = (x**2 + y**2)**0.5
theta1 = cmath.atan(y/x)*180/math.pi
'''
if ((x<0)&(y<0))
theta1 = theta1 -180;
elif ((x<0)&(y>0))
theta1 = theta1 +180;
'''
theta2 = theta1 + 360
rtheta1 = theta1/2
rtheta2 = theta2/2
'''
if (rtheta2 > 180)
rtheta2 = rtheta2 -360;
elif ((x<0)&(y>0))
rtheta2 = rtheta2 +360;
'''
rr = r**0.5
x1 = rr*cmath.cos(rtheta1*math.pi/180)
y1 = rr*cmath.sin(rtheta1*math.pi/180)
z1 = x1 + y1*1j
x2 = rr*cmath.cos(rtheta2*math.pi/180)
y2 = rr*cmath.sin(rtheta2*math.pi/180)
z2 = x2 + y2*1j
#Results
print "\n\n Result \n\n"
print "\n two roots are (",round(z1.real,2)," + (",round(z1.imag,2),")i) "
print " and (",round(z2.real,2)," + (",round(z2.imag,2),")i)"
print "\n two roots are (",round( rr,2),"/_",round((cmath.phase(complex(z1.real,z1.imag)))*180/math.pi,2),"deg) "
print " and (",round( rr,2),"/_",round((cmath.phase(complex(z2.real,z2.imag)))*180/math.pi,2),"deg)"