from __future__ import division
import math
#initializing the variables:
e0 = 8.85E-12;
er = 2.8;
l = 1;# in m
#calculation:
#From Figure 40.9
m = 16;# number of parallel squares measured along each equipotential
n = 6;# the number of series squares measured along each line of force
C = e0*er*l*m/n
#Results
print "\n\n Result \n\n"
print "\n capacitance is ",round(C*1E12,2),"pFarad."
from __future__ import division
import math
#initializing the variables:
e0 = 8.85E-12;
er = 3.4;
l = 100;# in m
#calculation:
#From Figure 40.10
m = 13;# number of parallel squares measured along each equipotential
n = 4;# the number of series squares measured along each line of force
C = e0*er*l*m/n
#Results
print "\n\n Result \n\n"
print "\n capacitance is ",round(C*1E9,2),"nFarad."
from __future__ import division
import math
#initializing the variables:
e0 = 8.85E-12;
er = 2.7;
ri = 0.0005;# in m
ro = 0.006;# in m
#calculation:
#capacitance C
C = 2*math.pi*e0*er/(math.log(ro/ri))
#Results
print "\n\n Result \n\n"
print "\n capacitance is ",round(C*1E12,2),"pFarad."
from __future__ import division
import math
#initializing the variables:
C = 80E-12;# in Farads
e0 = 8.85E-12;
er = 3.5;
d0 = 0.008;# in m
#calculation:
#internal diameter
di = d0*(math.e**(2*math.pi*e0*er/C))
#Results
print "\n\n Result \n\n"
print "\n internal diameter is ",round(di,2)," m."
from __future__ import division
import math
#initializing the variables:
e0 = 8.85E-12;
er = 3.5;
di = 0.08;# in m
d0 = 0.032;# in m
r = 0.03;# in m
V = 40000;# in Volts
#calculation:
#capacitance C
C = 2*math.pi*e0*er/(math.log(di/d0))
#dielectric stress at radius r,
E = V/(r*math.log(di/d0))
#maximum dielectric stress,
Emax = V/((d0/2)*(math.log((di/d0))))
#minimum dielectric stress,
Emin = V/((di/2)*(math.log((di/d0))))
#Results
print "\n\n Result \n\n"
print "\n capacitance is ",round(C*1E12,2),"pF/km"
print "\n dielectric stress at radius r is ",round(E,2),"V/m"
print "\n maximum dielectric stress, is ",round(Emax,2),"V/m minimum dielectric stress ",round( Emin,2),"V/m"
from __future__ import division
import math
#initializing the variables:
e0 = 8.85E-12;
er = 3.5;
V = 60000;# in Volts
f = 50;# in Hz
Em = 10E6;# in V/m
#calculation:
#core radius, a
a = V/Em
#internal sheath radius,
b = a*math.e**1
#capacitance
C = 2*math.pi*e0*er/(math.log(b/a))
#Charging current
I = V*2*math.pi*f*C
#charging current per kilometre
Ipkm = I*1000
#Results
print "\n\n Result \n\n"
print "\n core radius is ",round(a*1000,2),"mm and internal sheath radius ",round(b*1000,1),"mm"
print "\n capacitance is ",round(C*1E12,0),"pF/m"
print "\n the charging current per kilometre ",round(Ipkm,2)," A"
from __future__ import division
import math
#initializing the variables:
e0 = 8.85E-12;
er = 2.5;
di = 0.08;# in m
d0 = 0.025;# in m
r = 1000;# in m
V = 132000;# in Volts
f = 50;# in Hz
de = 3.5E-3;# rad.
#calculation:
#core radius, a
a = d0/2
#internal sheath radius,
b = di/2
#capacitance
C = 2*math.pi*e0*er*1E3/(math.log(b/a))
#Charging current
I = V*2*math.pi*f*C
#power loss
P = (2*math.pi*f*C*math.tan(de))*V**2
#Results
print "\n\n Result \n\n"
print "\n (a)capacitance for a 1 km length is ",round(C*1E6,2),"uF"
print "\n (b)the charging current ",round(I,2),"A/km"
print "\n (c)power loss ",round(P,2)," W"
from __future__ import division
import math
#initializing the variables:
e0 = 8.85E-12;
er = 3.2;
di = 0.06;# in m
d0 = 0.020;# in m
#calculation:
#core radius, a
a = d0/2
#internal sheath radius,
b = di/2
#capacitance
C = 2*math.pi*e0*er/(math.log(b/a))
#Results
print "\n\n Result \n\n"
print "\n capacitance per m of length is ",round(C*1E9,2),"nF"
from __future__ import division
import math
#initializing the variables:
e0 = 8.85E-12;
er = 1;
D = 0.05;# in m
d = 0.005;# in m
l = 200;# in m
#calculation:
#capacitance
C = math.pi*e0*er/(math.log(D/(d/2)))
#capacitance of a 200 m length
C200 = C*l
#Results
print "\n\n Result \n\n"
print "\n capacitance of a 200 m length is ",round(C200*1E6,5),"uF"
from __future__ import division
import math
#initializing the variables:
e0 = 8.85E-12;
er = 1;
D = 1.2;# in m
r = 0.004;# in m
f = 50;# in Hz
V = 15000;# in Volts
l = 1000;# in m
#calculation:
#capacitance
C = math.pi*e0*er/(math.log(D/r))
#capacitance of a 1 km length
Cpkm = C*l
#Charge Q
Q = Cpkm*V
#Charging current
I = V*2*math.pi*f*Cpkm
#Results
print "\n\n Result \n\n"
print "\n capacitance per 1km length is ",round(Cpkm*1E9,2),"nF"
print "\n Charge Q is ",round(Q*1E6,2),"uC"
print "\n Charging current is ",round(I,2)," A"
from __future__ import division
import math
#initializing the variables:
e0 = 8.85E-12;
er = 1;
I = 0.015;# in Amperes
d = 1.25;# in m
r = 800;# in m
f = 50;# in Hz
V = 10000;# in Volts
#calculation:
#capacitance
C = I/(2*math.pi*f*V)
#required maximum value of capacitance
Cmax = C/r
#maximum diameter of each conductor
D = 2*d/(math.e**(math.pi*e0*er/Cmax))
#Results
print "\n\n Result \n\n"
print "\n required maximum value of capacitance is ",round(Cmax*1E12,2),"pF/m"
print "\nthe maximum diameter of each conductor is ",round(D,2)," m"
from __future__ import division
import math
#initializing the variables:
e0 = 8.85E-12;
er = 1;
C = 10E-9;# in Farad
V = 1000;# in Volts
t = 10E-6;# in sec
#calculation:
#energy stored,Wf
Wf = C*V*V/2
#average power developed
Pav = Wf/t
#Results
print "\n\n Result \n\n"
print "\n the energy stored is ",Wf,"J"
print "\nthe average power developed is ",Pav," W"
from __future__ import division
import math
#initializing the variables:
e0 = 8.85E-12;
er = 1;
Q = 5E-3;# in Coulomb
W = 0.625;# in Joules
#calculation:
#voltage across the plates
V = 2*W/Q
#Capacitance C
C = Q/V
#Results
print "\n\n Result \n\n"
print "\n voltage across the plates is ",V," V"
print "\n Capacitance C is ",C*1E6,"uF"
from __future__ import division
import math
#initializing the variables:
e0 = 8.85E-12;
er = 10;
C = 0.01E-6;# in Farad
E = 10E6;# in V/m
V = 2500;# in Volts
#calculation:
#thickness of ceramic dielectric,
d = V/E
#cross-sectional area of plate
A = C*d/(e0*er)
#Maximum energy stored,
W = C*V*V/2
#Results
print "\n\n Result \n\n"
print "\n thickness of ceramic dielectric is ",d*1000,"mm"
print "\n cross-sectional area of plate, is ",round(A,2),"m2"
print "\n Maximum energy stored is ",round(W,3)," J"
from __future__ import division
import math
#initializing the variables:
e0 = 8.85E-12;
er = 2.3;
A = 0.02;# in m2
C = 400E-12;# in Farad
V = 100;# in Volts
#calculation:
#energy stored per unit volume of dielectric,
W = ((C*V)**2)/(2*e0*er*A**2)
#Results
print "\n\n Result \n\n"
print "\n energy stored per unit volume of dielectric is ",round(W,2)," J/m3"
from __future__ import division
import math
#initializing the variables:
u0 = 4*math.pi*1E-7;
ur = 1;
a = 0.001;# in m
b = 0.004;# in m
#calculation:
#inductance L
L = (u0*ur/(2*math.pi))*(0.25 + math.log(b/a))
#Results
print "\n\n Result \n\n"
print "\n inductance L is ",round(L*1E6,2),"uH/m"
from __future__ import division
import math
#initializing the variables:
u0 = 4*math.pi*1E-7;
ur = 1;
da = 0.010;# in m
L = 4E-7;# in H/m
#calculation:
#diameter of the sheath
db = da*(math.e**(L/(u0*ur/(2*math.pi))))
#Results
print "\n\n Result \n\n"
print "\n diameter of the sheath is ",round(db,2)," m"
from __future__ import division
import math
#initializing the variables:
u0 = 4*math.pi*1E-7;
ur = 1;
e0 = 8.85E-12;
er = 3;
da = 0.010;# in m
db = 0.025;# in m
l = 7500;# in m
#calculation:
#inductance per metre length
L = (u0*ur/(2*math.pi))*(0.25 + math.log(db/da))
#Since the cable is 7500 m long,
L7500 = L*7500
#capacitance C
C = 2*math.pi*e0*er/(math.log(db/da))
#//Since the cable is 7500 m long,
C7500 = C*7500
#Results
print "\n\n Result \n\n"
print "\ninductance is ",round(L7500*1000,2)," mH"
print "\ncapCItance is ",round(C7500*1E6,2),"uF"
from __future__ import division
import math
#initializing the variables:
u0 = 4*math.pi*1E-7;
ur = 1;
e0 = 8.85E-12;
er = 3;
D = 1.2;# in m
a = 0.008;# in m
#calculation:
#inductance per metre length
L = (u0*ur/(math.pi))*(math.log(D/a))
#Results
print "\n\n Result \n\n"
print "\ninductance is ",round(L*1E6,2),"uH/m"
from __future__ import division
import math
#initializing the variables:
u0 = 4*math.pi*1E-7;
ur = 1;
e0 = 8.85E-12;
er = 1;
l = 1000;# in m
D = 0.8;# in m
a = 0.01/2;# in m
#calculation:
#inductance per metre length
L = (u0*ur/(math.pi))*(0.25 + math.log(D/a))
#Since the cable is 1000 m long,
L1k = L*l
#capacitance C
C = math.pi*e0*er/(math.log(D/a))
#//Since the cable is 1000 m long,
C1k = C*l
#Results
print "\n\n Result \n\n"
print "\ninductance is ",round(L1k*1000,2)," mH"
print "\ncapcitance is ",round(C1k*1E9,2),"nF"
from __future__ import division
import math
#initializing the variables:
L = 2.185E-6;# in H/m
u0 = 4*math.pi*1E-7;
ur = 1;
a = 0.012/2;# in m
#calculation:
#distance D
D = a*math.e**((L*math.pi)/(u0*ur) - 0.25)
#Results
print "\n\n Result \n\n"
print "\ndistance D is ",round(D,2)," m"
from __future__ import division
import math
#initializing the variables:
L = 0.2;# in H
I = 0.05;# in Amperes
u0 = 4*math.pi*1E-7;
ur = 1;
#calculation:
#energy stored in inductor
W = L*I*I/2
#current I
I = (2*2*W/L)**0.5
#Results
print "\n\n Result \n\n"
print "\nenergy stored in inductor is ",round(W*1000,2),"mJ"
print "\ncurrent I is ",round(I,2),"A"
from __future__ import division
import math
#initializing the variables:
B = 0.05;# in Tesla
A = 500E-6;# in m2
l = 0.002;# in m
u0 = 4*math.pi*1E-7;
#calculation:
#energy stored
W = (B**2)/(2*u0)
#Volume of airgap
v = A*l
#energy stored in airgap
W = W*v
#Results
print "\n\n Result \n\n"
print "\nenergy stored in the airgap is ",round(W*1E6,2),"uJ"
from __future__ import division
import math
#initializing the variables:
B = 0.8;# in Tesla
A = 500E-6;# in m2
l = 0.002;# in m
u0 = 4*math.pi*1E-7;
ur = 1;
e0 = 8.85E-12;
er = 1;
#calculation:
#energy stored in mag. field
W = (B**2)/(2*u0)
#electric field
E = (2*W/(e0*er))**0.5
#Results
print "\n\n Result \n\n"
print "\nelectric field strength is ",round(E/1E6,2),"MV/m"