CHAPTER19 : COMPUTATIONS OF SYNCHRONOUS MOTOR PERFORMANCE

Example E01 : Pg 755

In [1]:
# a
import math
efficiency = 0.9; 
Pi = 200.*746./efficiency; # input power 
x = 11.; # reactance of the motor
V1 = 2300./math.sqrt(3.); # voltage rating 
delta = 15.*math.pi/180.; # power angle
Ef = Pi*x/(3.*V1*math.sin(delta)); # the induced excitation voltage per phase 
print '%s' %("a")
print '%s %.2f' %("the induced excitation voltage per phase = ",Ef)

# b
z = complex(0,x); # impedance of the motor 
ef = complex(Ef*math.cos(-delta),Ef*math.sin(-delta));

Ia = (V1 - ef)/z ; # armature current 
print '%s' %("b")
print "armatur current = ",Ia

# c
theata =0.693;# math.atan(imag(Ia)/real(Ia)); # phase difference between Ia and V1
pf = math.cos(theata); # power factor 

print '%s' %("c")
print '%s %.2f' %("power factor = ",pf)

if math.sin(theata)> 0 :
    print '%s' %("leading")
else :
    print '%s' %("lagging")
a
the induced excitation voltage per phase =  1768.62
b
armatur current =  (41.6138454894+34.5862930161j)
c
power factor =  0.77
leading