#The coil has resistance of R ohm and inductance L2
#ZKL=25+j(2*pi*f)*0.05
ZLM=100
#ZKN=(R+2)+j(2*pi*f)*L2
ZNM=100
#Now (ZKL/ZLM)=(ZKN/ZNM)
#((25+j(2*pi*f)*0.05)/100)=((R+2)+j(2*pi*f)*L2/100)
#Equating Real and imaginary parts
#we have 25=R+2
#2*pi*f)*0.05=2*pi*f)*L2
R=23
L2=50
print "Resistance=%.0f ohm"%(R)
print "Inductance=%.0f mH"%(L2)
from __future__ import division
from math import atan, degrees, pi
C1=50*10**-12
r2=1500/pi
r3=120
Cs=C1*r2/r3*10**12
print "Cable capacitance=%.1f pF"%(Cs)
C2=0.95*10**-6
rs=C2*r3/(C1*10**6)
print "Parallel loss resistance=%.2f Mega-ohm"%(rs)
w=314
Loss_angle=degrees(atan(rs*w*Cs) )
print "Loss angle=%.1f degree"%(Loss_angle)
C3=106*10**-12
C1=0.35*10**-6
R1=318
R2=130
C2=C3*R1/R2
Rx=R2*C1/C3
print "Series Resistance = %.2f ohm"%(Rx)
wr=314
pf=wr*Rx*C2
print "Power factor = %.2f"%(pf)
Q=10
Cs=0.2
P=2
Cx=Q*Cs/P
print "Capacitance = %.1f uF"%(Cx)
S=5
rx=P*S/Q
print "Resistance = %.0f Kohm"%(rx)
S=900
P=1.5*10**3
Q=2*10**3
Cs=0.2*10**-6
rx=S*P/Q
print "Resistance=%.0f ohm"%(rx)
Lx=P*Cs*S
print "Inductance=%.2f H"%(Lx)
R1=2
R2=1
R4=500
L4=0.1
R3=R1*R4/R2
print "Resistance=%.0f ohm"%(R3)
L3=R1*L4/R2
print "Inductance=%.2f H"%(L3)
S=0.875
P=1.35*10**3
Q=1*10**3
Cs=0.1*10**-6
rx=S*P/Q
print "Resistance = %.2f ohm"%(rx)
Lx=P*Cs*S*10**3
print "Inductance = %.3f mH"%(Lx)
r1=250
r4=1200
r2=10**6
C4=4*10**-5
r3=r1*r4/r2
print "Resistance=%.2f ohm"%(r3)
C3=r2*C4/r1
print "Capacitance=%.2f uF"%(C3)
R2=1000
R4=833
f=50
w=2*pi*f
C=0.38*10**-6
R3=16800
R1=(R2*R3*R4*w**2*C**2)/(1+w**2*R4**2*C**2)
print "Resistance = %.2f ohm"%(R1)
L=R2*R3*C/(1+w**2*R4**2*C**2)
print "Inductance = %.2f H"%(L)