import math
#initialisation of variables
Vo=3*math.sqrt(2)*110/math.pi
#Calculations
Vd=Vo*(math.cos(math.radians(0))+math.cos(math.radians(15)))/2.0
Vd1=Vo*(math.cos(math.radians(30)) + math.cos(math.radians(45)))/2.0
Vd2=Vo*(math.cos(math.radians(45)) + math.cos(math.radians(60)))/2.0
#Results
print("(a)For a=0, Vd=%.2f kV" %Vd)
print("(b)For a=30,Vd=%.2f kV" %Vd1)
print("(c)For a=45,Vd=%.2f kV" %Vd2)
import math
#initialisation of variables
#Calculations
VL=(100.0*2*math.pi)/(3*math.sqrt(2.0)*(math.cos(math.radians(30)) + math.cos(math.radians(45))))
print("VL=%.2f kV" %VL) #Answers don't match due to difference in rounding off of digits
Tr=VL/110.0
#Results
print("tap ratio=%.2f " %Tr)
import math
#initialisation of variablesVd=100000
Id=800.0 # current
#Calculations
X=((3*math.sqrt(2.0)*94.115*0.866*1000.0/math.pi)-Vd)*math.pi/(3.0*Id)
#Results
print("effective reactance per phase , X=%.2f ohm\n" %X) #Answer don't match due to difference in rounding off of digits
import math
#initialisation of variables
a=15.0
d0=10.0
y=15.0
X=15.0
R=10.0
#Calculations
Id=(3*math.sqrt(2)*120*(math.cos(math.radians(a))-math.cos(math.radians(d0+y)))*1000.0)/((R+(3.0*2*X)/math.pi)*math.pi)
#Results
print("Id=%.2f amp." %Id)